Studiare

In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.

Calendario accademico

Il calendario accademico riporta le scadenze, gli adempimenti e i periodi rilevanti per la componente studentesca, personale docente e personale dell'Università. Sono inoltre indicate le festività e le chiusure ufficiali dell'Ateneo.
L’anno accademico inizia il 1° ottobre e termina il 30 settembre dell'anno successivo.

Calendario accademico

Calendario didattico

Il calendario didattico indica i periodi di svolgimento delle attività formative, di sessioni d'esami, di laurea e di chiusura per le festività.

Definizione dei periodi di lezione
Periodo Dal Al
I sem. 1-ott-2014 30-gen-2015
II sem. 2-mar-2015 12-giu-2015
Sessioni degli esami
Sessione Dal Al
Sessione straordinaria appelli d'esame 2-feb-2015 27-feb-2015
Sessione estiva appelli d'esame 15-giu-2015 31-lug-2015
Sessione autunnale appelli d'esame 1-set-2015 30-set-2015
Sessioni di lauree
Sessione Dal Al
Sessione autunnale appello di laurea 2014 27-nov-2014 27-nov-2014
Sessione invernale appello di laurea 2015 17-mar-2015 17-mar-2015
Sessione estiva appello di laurea 2015 21-lug-2015 21-lug-2015
Sessione II autunnale appello di laurea 2015 12-ott-2015 12-ott-2015
Sessione autunnale appello di laurea 2015 26-nov-2015 26-nov-2015
Sessione invernale appello di laurea 2016 15-mar-2016 15-mar-2016
Vacanze
Periodo Dal Al
Vacanze di Natale 22-dic-2014 6-gen-2015
Vacanze di Pasqua 2-apr-2015 7-apr-2015
Ricorrenza del Santo Patrono 21-mag-2015 21-mag-2015
Vacanze estive 10-ago-2015 16-ago-2015

Calendario esami

Gli appelli d'esame sono gestiti dalla Unità Operativa Segreteria Corsi di Studio Scienze e Ingegneria.
Per consultazione e iscrizione agli appelli d'esame visita il sistema ESSE3.
Per problemi inerenti allo smarrimento della password di accesso ai servizi on-line si prega di rivolgersi al supporto informatico della Scuola o al servizio recupero credenziali

Calendario esami

Per dubbi o domande leggi le risposte alle domande più frequenti F.A.Q. Iscrizione Esami

Docenti

A B C D G L M O R S Z
AlbertiniFrancesca

Albertini Francesca

Albi Giacomo

symbol email giacomo.albi@univr.it symbol phone-number +39 045 802 7913

Angeleri Lidia

symbol email lidia.angeleri@univr.it symbol phone-number +39 045 802 7911

Baldo Sisto

symbol email sisto.baldo@univr.it symbol phone-number +39 045 802 7935

Bos Leonard Peter

symbol email leonardpeter.bos@univr.it

Caliari Marco

symbol email marco.caliari@univr.it symbol phone-number +39 045 802 7904

Chignola Roberto

symbol email roberto.chignola@univr.it symbol phone-number 045 802 7953

Cicognani Simona

symbol email simona.cicognani@univr.it symbol phone-number 0458028099
Foto,  10 marzo 2017

Cordoni Francesco Giuseppe

symbol email francescogiuseppe.cordoni@univr.it

Daffara Claudia

symbol email claudia.daffara@univr.it symbol phone-number +39 045 802 7942

Daldosso Nicola

symbol email nicola.daldosso@univr.it symbol phone-number +39 045 8027076 - 7828 (laboratorio)

De Sinopoli Francesco

symbol email francesco.desinopoli@univr.it symbol phone-number 045 842 5450

Di Persio Luca

symbol email luca.dipersio@univr.it symbol phone-number +39 045 802 7968

Gaburro Elena

symbol email elena.gaburro@univr.it

Gregorio Enrico

symbol email Enrico.Gregorio@univr.it symbol phone-number +39 045 802 7937

Lo Bue Maria Carmela

symbol email mariacarmela.lobue@univr.it symbol phone-number +39 0458028768

Malachini Luigi

symbol email luigi.malachini@univr.it symbol phone-number 045 8054933

Marigonda Antonio

symbol email antonio.marigonda@univr.it symbol phone-number +39 045 802 7809

Mariotto Gino

symbol email gino.mariotto@univr.it

Mariutti Gianpaolo

symbol email gianpaolo.mariutti@univr.it symbol phone-number +390458028241

Mazzuoccolo Giuseppe

symbol email giuseppe.mazzuoccolo@univr.it symbol phone-number +39 0458027838

Orlandi Giandomenico

symbol email giandomenico.orlandi at univr.it symbol phone-number +39 045 802 7986
Foto,  29 settembre 2016

Rinaldi Davide

symbol email davide.rinaldi@univr.it

Rizzi Romeo

symbol email romeo.rizzi@univr.it symbol phone-number +39 045 802 7088

Schuster Peter Michael

symbol email peter.schuster@univr.it symbol phone-number +39 045 802 7029

Solitro Ugo

symbol email ugo.solitro@univr.it symbol phone-number +39 045 802 7977

Zuccher Simone

symbol email simone.zuccher@univr.it

Piano Didattico

Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.

2° Anno  Attivato nell'A.A. 2015/2016

InsegnamentiCreditiTAFSSD
6
A
MAT/02
6
B
MAT/03
6
B
MAT/06
Uno tra i seguenti insegnamenti
6
C
FIS/01
6
C
SECS-P/01
Uno tra i seguenti insegnamenti
6
C
SECS-P/01

3° Anno  Attivato nell'A.A. 2016/2017

InsegnamentiCreditiTAFSSD
6
C
SECS-P/05
Uno o due insegnamenti tra i seguenti per un totale di 12 cfu
Prova finale
6
E
-
Attivato nell'A.A. 2015/2016
InsegnamentiCreditiTAFSSD
6
A
MAT/02
6
B
MAT/03
6
B
MAT/06
Uno tra i seguenti insegnamenti
6
C
FIS/01
6
C
SECS-P/01
Uno tra i seguenti insegnamenti
6
C
SECS-P/01
Attivato nell'A.A. 2016/2017
InsegnamentiCreditiTAFSSD
6
C
SECS-P/05
Uno o due insegnamenti tra i seguenti per un totale di 12 cfu
Prova finale
6
E
-
Insegnamenti Crediti TAF SSD
Tra gli anni: 1°- 2°- 3°
Tra gli anni: 1°- 2°- 3°
Altre attività formative
6
F
-

Legenda | Tipo Attività Formativa (TAF)

TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.




S Stage e tirocini presso imprese, enti pubblici o privati, ordini professionali

Codice insegnamento

4S00254

Coordinatore

Luca Di Persio

Crediti

6

Lingua di erogazione

Italiano

Settore Scientifico Disciplinare (SSD)

MAT/06 - PROBABILITÀ E STATISTICA MATEMATICA

Periodo

I sem. dal 3-ott-2016 al 31-gen-2017.

Obiettivi formativi

Sistemi Stocastici [ Matematica Applicata ]
AA 2016/2017

Il corso di Sistemi Stocastici si propone per obiettivo l'introduzione ai concetti di base della teoria soggiacente alla rigorosa descrizione matematica di dinamiche temporali di grandezze aleatorie. In particolare i prerequisiti del corso sono quelli di un corso standard di Probabilità per Matematica/Fisica.
Si suppone che i discenti siano a conoscenza delle nozioni elementari del calcolo delle Probabilità, così come nell'assiomatica di Kolmogorov, con particolare riferimento alla conoscenza dei concetti di funzione di densità, ripartizione, probabilità condizionata, aspettazione condizionata, teoria della misura (di base),funzioni caratteristiche di variabili aleatorie, nozioni di convergenza (in misura, q.o., in Probabilità, etc.), teorema del limite centrale e sue (basilari) applicazioni, etc.

Il corso di Sistemi Stocastici mira, in particolare, a fornire i concetti di base di: spazio di probabilità filtrato, martingala, tempo di arresto, teoremi di Doob, teoria delle catene di Markov a tempo discreto e continuo (classificazione degli stati, misure invarianti, limite, teorema ergodico, etc.), nozioni basilari sulla teoria delle code ed introduzione al moto Browniano.

Una parte del corso è dedicata all'implementazione al calcolatore dei concetti operativi soggiacenti la trattazione dei sistemi stocastici del tipo catena di Markov, tanto a tempo discreto che continuo.

Una parte del corso è dedicata all'introduzione ed allo studio operativo, per via di esercitazione al calcolatore, di serie temporali univariate.

E' importante sottolineare come l'insegnamento di Sistemi Stocastici sia organizzato in modo tale che gli studenti possano concretamente completare ed ulteriormente sviluppare le proprie:
° capacità di analisi, sintesi ed astrazione;
° specifiche competenze computazionali ed informatiche;
° abilità di comprensione di testi, anche avanzati, di Matematica in generale e Matematica applicata in particolare;
° capacità di sviluppare modelli matematici per le scienze fisiche e naturali, essendo al contempo in grado di analizzarne i limiti e l'effettiva applicabilità, anche da un punto di vista computazionale;
° competenze atte allo sviluppo di opportuni modelli matematici e statistici per l’economia e per i mercati
finanziari;
° capacità di estrarre informazioni qualitative da dati quantitativi;
° conoscenze di linguaggi di programmazione o software specifici.

Programma

Sistemi Stocastici [ Matematica Applicata ]
AA 2016/2017

Programma del corso

• Aspettazione condizionata ( Materiale didattico dal Cap.1 di [BMP] )
• Definizione e prime proprietà
• Aspettazioni condizionate e leggi condizionate

• Introduzione ai processi Stocastici ( Materiale didattico dal Cap.1 di [BMP] )
• Spazio di probabilità filtrato, filtrazioni
• Processo stocastico adattato (ad una filtrazione)
• Martingale (prima definizione ed esempi: Catene di Markov)
• Teorema di caratterizzazione di Kolomogorov
• Tempi di arresto

• Martingale ( Materiale didattico dal Cap.3 di [BMP]
• Definizione di processo martingala, risp. super, risp. sotto, martingala
• Proprietà fondamentali
• Tempi d'arresto per processi martingala
• Teoremi di convergenza per processi martingala

• Catene di Markov (CM) ( Materiale didattico dal Cap.4 di [Beichelet] , Cap.5 di [Baldi] )
• Matrici di transizione e CM
• Costruzione ed esistenza per CM
• CM omogenee nel tempo e nello spazio
• Spazio e CM canonici
• Classificazione degli stati di una CM ( e relative classi )
• Equazione di Chapman-Kolmogorov
• Stati riccorrenti, risp. Transienti (criteri di classificazione)
• Catene irriducibili e ricorrenti
• Misure invarianti (stazionarie), ergodiche, limite (Teorema ergodico)
• Processi di nascita e morte (tempo discreto)

• CM a tempo continuo ( Materiale didattico dal Cap.5 di [Beichelt] )
• Definizioni basilari
• Equazioni di Chapman-Kolmogorov
• Distribuzioni assolute e stazionarie
• Classificazione degli stati
• Probabilità e tassi di transizione
• Equazioni (differenziali) di Kolmogorov
• Leggi stazionarie
• Processi di nascita e morte (tempo continuo:primi cenni)
• Teoria delle code (tempo continuo: primi cenni)

• Processi di punto, di conteggio e di Poisson ( Materiale didattico dal Cap.3 di [Beichelt] )
• Definizioni basilari
• Processi stocastici di punto (PSP) e di conteggio (PSC)
• PSP marcati
• Stazionarietà, intensità, composizione per PSP e PSC
• Processi di Poisson omogenei (PPO)
• Processi di Poisson non omogenei (PPnO)
• Processi di Poisson misti (PPM)

• Processi di nascita e morte (N&M) ( Materiale didattico dal Cap.5 di [Beichelt] )
• Processi di nascita
• Processi di morte
• Processi di N&M
° Probabilità di stato dipendenti dal tempo
° Probabilità di stato stazionarie
° Processi di N&M non omogenei




Bibliografia

I testi utilizzati per la trattazione degli argomenti enumerati
nel programma del corso sono

[Baldi] P. Baldi, Calcolo delle Probabilità, McGraw-Hill Edizioni (Ed. 01/2007)

[Beichelt] F. Beichelt, Stochastic Processes in Science, Engineering and Finance, Chapman & Hall/CRC, Taylor & Francis group, (Ed. 2006)

[BPM] P. Baldi, L. Matzliak and P. Priouret, Martingales and Markov Chains – Solve Exercises and Elements of Theory, Chapman & Hall/CRC (English edition, 2002)

Ulteriori interessanti testi sono

N. Pintacuda, Catene di Markov, Edizioni ETS (ed. 2000)

Brémaud, P., Markov Chains. Gibbs Fields, Monte Carlo Simulation, and Queues, Texts in Applied Mathematics, 31. Springer-Verlag, New York, 1999

Duflo, M., Random Iterative Models, Applications of Mathematics, 34. SpringerVerlag, Berlin, 1997

Durrett, R., Probability: Theory and Examples, Wadsworth and Brooks, Pacific Grove CA, 1991

Grimmett, G. R. and Stirzaker, D. R., Probability and Random Processes. Solved Problems. Second edition. The Clarendon Press, Oxford University Press, New York, 1991

Hoel, P. G., Port, S. C. and Stone, C. J., Introduction to Stochastic Processes, Houghton Mifflin, Boston, 1972

Testi di riferimento
Autore Titolo Casa editrice Anno ISBN Note
P. Baldi Calcolo delle Probabilità McGraw Hill 2007 9788838663659
N. Pintacuda Catene di Markov Edizioni ETS 2000
Hoel, P. G., Port, S. C. and Stone, C. J. Introduction to Stochastic Processes Houghton Mifflin, Boston 1972
Levin, David A., and Yuval Peres Markov chains and mixing times American Mathematical Society 2017
P. Brémaud Markov Chains. Gibbs Fields, Monte Carlo Simulation, and Queues Texts in Applied Mathematics, 31. Springer-Verlag, New York 1999
P. Baldi, L. Matzliak and P. Priouret Martingales and Markov Chains – Solve Exercises and Elements of Theory Chapman & Hall/CRC (English edition) 2002
G. R. Grimmett, D. R. Stirzaker Probability and Random Processes: Solved Problems (Edizione 2) The Clarendon Press, Oxford University Press, New York 1991
Durrett, R Probability: Theory and Examples Wadsworth and Brooks, Pacific Grove CA 1991
Duflo, M. Random Iterative Models, Applications of Mathematics, 34 SpringerVerlag, Berlin 1997

Modalità d'esame

Sistemi Stocastici [ Matematica Applicata ]
AA 20016/2017

Il corso si articola in tre parti

1) Teoria dei sistemi stocastici
2) Introduzione all'analisi di serie storiche
3) Esercitazione al calcolatore ( principalmente basate sulla teoria delle catene di Markov, tanto a tempo discreto che continuo )

La parte (2) verrà principalmente svolta in modalità laboratoriale, utilizzando aule informatiche attrezzate con la possibilità, per ogni studente frequentante, di utilizzare un calcolatore al fine di implementare in tempo reale i modelli proposti nel corso della lezione. Tale attività verrà coadiuvata da un tutor che svolgerà i propri compiti per un totale di 24 ore frontali.

La parte (3) verrà insegnata dal Prof. Caliari in modalità laboratoriale, sfruttando aule opportunamente attrezzate a livello informatico.

L’esame è previsto essere suddiviso in

* uno scritto relativo al primo punto
* un progetto presentato in accordo con il programma effettivamente svolto in laboratorio con il prof. Marco Caliari (punto 3)
* esercitazioni svolte relative al punto (2) con presentazione di un progetto

Il programma d'esame ( scritto ) di cui al punto (1)è quello riportato nella sezione Programma.
Il progetto da presentare con il prof. Caliari va con quest'ultimo concordato.

Il progetto da presentare in relazione al punto (2) verrà (dal/la singola/o studentessa/e, scelto nella seguente lista

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@PROGETTI
@ATTENZIONE: questa lista i potrà subire variazioni in relazione al programma effettivamente svolto in laboratorio
@
@SI PREGA di fare riferimento al docente per l'esatta determinazione del novero di progetti all'interno del quale poter @scegliere l'approfondimento di proprio interesse
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

1-Confrontare i seguenti metodi di stima/eliminazione di trend
*Studio delle differenze al primo ordine
*Smoothing con filtro a media mobile
*Trasformata di Fourier
*Smoothing esponenziale
*Data fitting con polinomio

2-Ricavare ed implementare in il predittore ad un passo dei modelli
FIR(4)
ARX(3,1)
OE(3,1)
ARMA(2,3)
ARMAX(2,1,2)
Box-Jenkins(nb,nc,nd,nf)

3-Confronto tra Prediction Error Minimization (PEM) e Maximum Likelihood (ML) per l'identificazione dei parametri di un modello (richiede una ricerca autonoma sul metodo ML)

4-Implementazione della k-fold cross-validation, ad esempio in linguaggio Matlab/Octave, ed associato test seguendo quanto fatto nel corso delle relazioni relative

5-Spiegazione estesa di (almeno) uno dei seguenti test
*Shapiro-Wilk
*Kolmogorov-Smirnov
*Lilliefors

La realizzazione pratica del progetto scelto dal singolo studente può essere effettuata utilizzando uno dei seguenti strumenti software: R, Python, Matlab, Gnu Octave, Excel

Il voto finale, espresso in 30esimi, risulterà dalla seguente formula
Voto= (5/6) * T + (1/6) * E + P
dove
T è il voto espresso in 30esimi relativo alla parte di Teoria ( scritto di competenza del prof. Di Persio)
E è il voto espresso in 30esimi relativo alla parte di esercitazioni ( orale di competenza del prof. Caliari)
P è un punteggio all'interno dell'intervallo [0,2]

E' importante sottolineare come gli obiettivi della prova d'esame siano centrati anche sulla valutazione della capacità del singolo studente di:

° svolgere compiti tecnici definiti in ambito modellistico-matematico
° estrarre informazioni qualitative da dati quantitativi con particolare riferimento all'analisi di serie storiche, allo studio ed alla realizzazione di modelli predittivi, allo sviluppo di processi automatici nell'ambito dell'analisi di fenomeni aleatori;
- usare strumenti informatici quali R, Matlab, Gnu Octave, etc., per implementare i modelli analizzati nel corso e/o implementati nelle ore di laboratorio;

Le/gli studentesse/studenti con disabilità o disturbi specifici di apprendimento (DSA), che intendano richiedere l'adattamento della prova d'esame, devono seguire le indicazioni riportate QUI

Tipologia di Attività formativa D e F

Insegnamenti non ancora inseriti

Prospettive


Avvisi degli insegnamenti e del corso di studio

Per la comunità studentesca

Se sei già iscritta/o a un corso di studio, puoi consultare tutti gli avvisi relativi al tuo corso di studi nella tua area riservata MyUnivr.
In questo portale potrai visualizzare informazioni, risorse e servizi utili che riguardano la tua carriera universitaria (libretto online, gestione della carriera Esse3, corsi e-learning, email istituzionale, modulistica di segreteria, procedure amministrative, ecc.).
Entra in MyUnivr con le tue credenziali GIA: solo così potrai ricevere notifica di tutti gli avvisi dei tuoi docenti e della tua segreteria via mail e anche tramite l'app Univr.

Prova Finale

Per gli scadenziari, gli adempimenti amministrativi e gli avvisi sulle sessioni di laurea, si rimanda al servizio Sessioni di laurea - Scienze e Ingegneria.

1. La prova finale prevede la preparazione sotto la guida di un relatore di un elaborato scritto (tesi), che può consistere nella trattazione di un argomento teorico, o nella risoluzione di un problema specifico, o nella descrizione di un progetto di lavoro, o di un'esperienza fatta in un'azienda, in un laboratorio, in una scuola ecc. La tesi, preferibilmente redatta in TeX/LaTeX/AMSTeX e usando il pacchetto LaTeX Frontespizio, può essere inviata preliminarmente in formato elettronico ai membri della Commissione Valutazione Tesi e dovrà essere presentata, in duplice copia, al momento della discussione. La tesi potrà essere redatta anche in lingua inglese.
2. La discussione della tesi, che dovrà durare indicativamente tra i venti e i trenta minuti, avverrà davanti ad una Commissione Valutazione Tesi nominata dal Presidente del collegio Didattico di Matematica. ll Presidente della commissione è il professore di ruolo di più alto grado accademico. La Commissione Valutazione Tesi è composta da almeno tre Docenti tra cui possibilmente il Relatore. Ogni Commissione Valutazione Tesi potrà valutare più studenti in funzione del contenuto del lavoro da essi presentato. La discussione della tesi viene effettuata durante i trenta giorni precedenti la data stabilita per la sessione di Laurea, ne viene data adeguata comunicazione ed è aperta al pubblico.
3. La Commissione Valutazione Tesi attribuisce ad ogni studente un punteggio della prova finale che va da zero a cinque. La valutazione della prova finale si articola in maniera tale da tenere conto delle conoscenze acquisite dallo studente durante il lavoro di tesi, del loro grado di comprensione, dell'autonomia di giudizio, delle capacità dimostrate dallo studente di applicare dette conoscenze e di comunicare efficacemente e compiutamente l'insieme degli esiti del lavoro ed i principali risultati ottenuti (si vedano la Tabella 1 per tesi di laurea triennale e la Tabella 2 per tesi di laurea magistrale, in calce al presente regolamento). Il Presidente della Commissione Valutazione Tesi invia una relazione, firmata da tutti i componenti della Commissione, al Presidente della Commissione di Esame Finale indicando per ogni studente il punteggio attribuito per l'esame finale ed un eventuale breve giudizio.
4. La Commissione di Esame Finale, unica per tutti gli studenti di quella sessione di Laurea, viene nominata dal Presidente del Collegio Didattico di Matematica. Il Presidente della commissione è il professore di ruolo di più alto grado accademico. La Commissione di Esame Finale deve essere composta da un Presidente e almeno da altri quattro Commissari scelti tra i docenti dell'Ateneo.
5. La Commissione di Esame Finale determina per ogni studente il punteggio finale sommando la media, pesata rispetto ai relativi CFU, espressa in centodecimi, dei voti degli esami del piano di studi, escluse le attività in sovrannumero, con il punteggio della prova finale. Aggiunge inoltre il punteggio attribuito alla carriera dello studente, da zero a due (si veda la Tabella 3, in calce al presente regolamento). Il voto finale, espresso in centodecimi, si ottiene arrotondando all'intero più vicino (all'intero superiore, in caso di equidistanza) il punteggio ottenuto, senza eccedere 110 centodecimi e assegnando la lode solo con l'unanimità della Commissione di Esame Finale al candidato che abbia raggiunto i 110 centodecimi dopo l'arrotondamento.
6. La Commissione di Esame Finale procede alla proclamazione dei nuovi Laureati in Matematica Applicata o Laureati magistrali in Mathematics con una cerimonia pubblica ed ufficiale.
 

Documenti

Titolo Info File
File pdf 1. Come scrivere una tesi pdf, it, 31 KB, 29/07/21
File pdf 2. How to write a thesis pdf, it, 31 KB, 29/07/21
File pdf 5. Regolamento tesi pdf, it, 171 KB, 20/03/24

Elenco delle proposte di tesi

Proposte di tesi Area di ricerca
Formule di rappresentazione per gradienti generalizzati Mathematics - Analysis
Formule di rappresentazione per gradienti generalizzati Mathematics - Mathematics
Proposte Tesi A. Gnoatto Argomenti vari
Tesi assegnate a studenti di matematica Argomenti vari

Modalità e sedi di frequenza

Come riportato nel regolamento didattico, la frequenza è in generale non obbligatoria, con la sola eccezione di alcune attività laboratoriali. Per queste sarà chiaramente indicato nella scheda del corrispondente insegnamento l'ammontare di ore per cui è richiesta la frequenza obbligatoria.

È consentita l'iscrizione a tempo parziale. Per saperne di più consulta la pagina Possibilità di iscrizione Part time.

Le attività didattiche del corso di studi si svolgono negli spazi dell’area di Scienze e Ingegneria che è composta dagli edifici di Ca’ Vignal 1, Ca’ Vignal 2, Ca’ Vignal 3 e Piramide, siti nel polo di Borgo Roma. 
Le lezioni frontali si tengono nelle aule di Ca’ Vignal 1, Ca’ Vignal 2, Ca’ Vignal 3 mentre le esercitazioni pratiche nei laboratori didattici dedicati alle varie attività.

Caratteristiche dei laboratori didattici a disposizione degli studenti

  • Laboratorio Alfa
    • 50 PC disposti in 13 file di tavoli
    • 1 PC per docente collegato a un videoproiettore 8K Ultra Alta Definizione per le esercitazioni
    • Configurazione PC: Intel Core i3-7100, 8GB RAM, 250GB SSD, monitor 24", Linux Ubuntu 24.04
    • Tutti i PC sono accessibili da persone in sedia a rotelle
  • Laboratorio Delta
    • 120 PC in 15 file di tavoli
    • 1 PC per docente collegato a due videoproiettori 4K per le esercitazioni
    • Configurazione PC: Intel Core i3-7100, 8GB RAM, 250GB SSD, monitor 24", Linux Ubuntu 24.04
    • Un PC è su un tavolo ad altezza variabile per garantire un accesso semplificato a persone in sedia a rotelle
  • Laboratorio Gamma (Cyberfisico)
    • 19 PC in 3 file di tavoli
    • 1 PC per docente con videoproiettore 4K
    • Configurazione PC: Intel Core i7-13700, 16GB RAM, 512GB SSD, monitor 24", Linux Ubuntu 24.04
  • Laboratorio VirtualLab
    • Accessibile via web: https://virtualab.univr.it
    • Emula i PC dei laboratori Alfa/Delta/Gamma
    • Usabile dalla rete universitaria o tramite VPN dall'esterno
    • Permette agli studenti di lavorare da remoto (es. biblioteca, casa) con le stesse funzionalità dei PC di laboratorio

Caratteristiche comuni:

  • Tutti i PC hanno la stessa suite di programmi usati negli insegnamenti di laboratorio
  • Ogni studente ha uno spazio disco personale di XXX GB, accessibile da qualsiasi PC
  • Gli studenti quindi possono usare qualsiasi PC in qualsiasi laboratorio senza limitazioni ritrovando sempre i documenti salvati precedentemente

Questa organizzazione dei laboratori offre flessibilità e continuità nel lavoro degli studenti, consentendo l'accesso ai propri documenti e all'ambiente di lavoro da qualsiasi postazione o da remoto.


Gestione carriere


Area riservata studenti


Erasmus+ e altre esperienze all’estero


Orientamento in itinere per studenti e studentesse

La commissione ha il compito di guidare le studentesse e gli studenti durante l'intero percorso di studi, di orientarli nella scelta dei percorsi formativi, di renderli attivamente partecipi del processo formativo e di contribuire al superamento di eventuali difficoltà individuali.

E' composta dai proff. Lidia Angeleri, Sisto Baldo, Marco Caliari, Paolo dai Pra, Francesca Mantese e Nicola Sansonetto.

Per scrivere ai docenti: nome.cognome@univr.it