Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

This information is intended exclusively for students already enrolled in this course.
If you are a new student interested in enrolling, you can find information about the course of study on the course page:

Laurea in Matematica applicata - Enrollment from 2025/2026

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.

CURRICULUM TIPO:

2° Year   activated in the A.Y. 2021/2022

ModulesCreditsTAFSSD
6
A
MAT/02
6
B
MAT/03
6
C
SECS-P/01
6
C
SECS-P/01
English language B1 level
6
E
-

3° Year   activated in the A.Y. 2022/2023

ModulesCreditsTAFSSD
6
C
SECS-P/05
Final exam
6
E
-
activated in the A.Y. 2021/2022
ModulesCreditsTAFSSD
6
A
MAT/02
6
B
MAT/03
6
C
SECS-P/01
6
C
SECS-P/01
English language B1 level
6
E
-
activated in the A.Y. 2022/2023
ModulesCreditsTAFSSD
6
C
SECS-P/05
Final exam
6
E
-
Modules Credits TAF SSD
Between the years: 1°- 2°- 3°
Between the years: 1°- 2°- 3°
Other activities
6
F
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S00022

Credits

9

Coordinator

Enrico Gregorio

Language

Italian

Also offered in courses:

  • Algebra of the course Bachelor's degree in Applied Mathematics

The teaching is organized as follows:

Learning outcomes

The course provides an introduction to modern algebra. After presenting and discussing the main algebraic structures (groups, rings, fields), the focus is on Galois theory. Also some applications are discussed, in particular results on solvability of polynomial equations by radicals.

At the end of the course the student will be expected to demonstrate that s/he has attained adequate skills in synthesis and abstraction, as well as the ability to recognize and produce rigorous proofs and to formalize and solve moderately difficult problems related to the topics of the course.

Program

------------------------
MM: ELEMENTI DI ALGEBRA
------------------------
------------------------ MM: Elementi di algebra teoria ------------------------ Groups, subgroups, cosets, quotient groups. Cyclic groups. The symmetric group. Sylow's Theorems. Solvable groups. Rings. Ideals. Homomorphisms. Principal ideal domains. Unique factorization domains. Euclidean rings. The ring of polynomials. Fields. Algebraic field extensions. The splitting field of a polynomial. Finite fields. Constructions with ruler and compass. ------------------------ MM: Drills on elements of algebra ------------------------ ------------------------ MM: Galois theory ------------------------ Normal extensions. Separable extensions. Galois theory. Theorem of Abel-Ruffini. ------------------------ MM: Drills on Galois theory ------------------------
------------------------
MM: TEORIA DI GALOIS
------------------------
------------------------ MM: Elementi di algebra teoria ------------------------ Groups, subgroups, cosets, quotient groups. Cyclic groups. The symmetric group. Sylow's Theorems. Solvable groups. Rings. Ideals. Homomorphisms. Principal ideal domains. Unique factorization domains. Euclidean rings. The ring of polynomials. Fields. Algebraic field extensions. The splitting field of a polynomial. Finite fields. Constructions with ruler and compass. ------------------------ MM: Drills on elements of algebra ------------------------ ------------------------ MM: Galois theory ------------------------ Normal extensions. Separable extensions. Galois theory. Theorem of Abel-Ruffini. ------------------------ MM: Drills on Galois theory ------------------------

Examination Methods

------------------------
MM: ELEMENTI DI ALGEBRA
------------------------
The exam consists of a written examination. The mark obtained in the written examination can be improved by the mark obtained for the homework and/or by an optional oral examination. Only students who have passed the written exam will be admitted to the oral examination.
------------------------
MM: TEORIA DI GALOIS
------------------------
The exam consists of a written examination. The mark obtained in the written examination can be improved by the mark obtained for the homework and/or by an optional oral examination. Only students who have passed the written exam will be admitted to the oral examination.

Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE