Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

A.A. 2016/2017

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
I sem. Oct 3, 2016 Jan 31, 2017
II sem. Mar 1, 2017 Jun 9, 2017
Exam sessions
Session From To
Sessione invernale Appelli d'esame Feb 1, 2017 Feb 28, 2017
Sessione estiva Appelli d'esame Jun 12, 2017 Jul 31, 2017
Sessione autunnale Appelli d'esame Sep 1, 2017 Sep 29, 2017
Degree sessions
Session From To
Sessione estiva Appelli di Laurea Jul 20, 2017 Jul 20, 2017
Sessione autunnale Appelli di laurea Nov 23, 2017 Nov 23, 2017
Sessione invernale Appelli di laurea Mar 22, 2018 Mar 22, 2018
Holidays
Period From To
Festa di Ognissanti Nov 1, 2016 Nov 1, 2016
Festa dell'Immacolata Concezione Dec 8, 2016 Dec 8, 2016
Vacanze di Natale Dec 23, 2016 Jan 8, 2017
Vacanze di Pasqua Apr 14, 2017 Apr 18, 2017
Anniversario della Liberazione Apr 25, 2017 Apr 25, 2017
Festa del Lavoro May 1, 2017 May 1, 2017
Festa della Repubblica Jun 2, 2017 Jun 2, 2017
Vacanze estive Aug 8, 2017 Aug 20, 2017

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrolment FAQs

Academic staff

A B C D G M O R S Z

Albi Giacomo

giacomo.albi@univr.it +39 045 802 7913

Angeleri Lidia

lidia.angeleri@univr.it 045 802 7911

Baldo Sisto

sisto.baldo@univr.it 045 802 7935

Bos Leonard Peter

leonardpeter.bos@univr.it +39 045 802 7987

Caliari Marco

marco.caliari@univr.it +39 045 802 7904

Chignola Roberto

roberto.chignola@univr.it 045 802 7953

Cordoni Francesco Giuseppe

francescogiuseppe.cordoni@univr.it

Daffara Claudia

claudia.daffara@univr.it +39 045 802 7942

Daldosso Nicola

nicola.daldosso@univr.it +39 045 8027076 - 7828 (laboratorio)

De Sinopoli Francesco

francesco.desinopoli@univr.it 045 842 5450

Di Persio Luca

luca.dipersio@univr.it +39 045 802 7968

Gregorio Enrico

Enrico.Gregorio@univr.it 045 802 7937

Malachini Luigi

luigi.malachini@univr.it 045 8054933

Marigonda Antonio

antonio.marigonda@univr.it +39 045 802 7809

Mariotto Gino

gino.mariotto@univr.it +39 045 8027031

Mariutti Gianpaolo

gianpaolo.mariutti@univr.it 045 802 8241

Mazzuoccolo Giuseppe

giuseppe.mazzuoccolo@univr.it +39 0458027838

Orlandi Giandomenico

giandomenico.orlandi at univr.it 045 802 7986
Foto,  September 29, 2016

Rinaldi Davide

davide.rinaldi@univr.it

Rizzi Romeo

romeo.rizzi@univr.it +39 045 8027088

Schuster Peter Michael

peter.schuster@univr.it +39 045 802 7029

Solitro Ugo

ugo.solitro@univr.it +39 045 802 7977

Zuccher Simone

simone.zuccher@univr.it

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

CURRICULUM TIPO:
ModulesCreditsTAFSSD
6
A
(MAT/02)
6
B
(MAT/03)
6
C
(SECS-P/01)
6
C
(SECS-P/01)
6
B
(MAT/06)
ModulesCreditsTAFSSD
6
C
(SECS-P/05)
12
C
(SECS-S/06)

2° Year

ModulesCreditsTAFSSD
6
A
(MAT/02)
6
B
(MAT/03)
6
C
(SECS-P/01)
6
C
(SECS-P/01)
6
B
(MAT/06)

3° Year

ModulesCreditsTAFSSD
6
C
(SECS-P/05)
12
C
(SECS-S/06)
Modules Credits TAF SSD
Between the years: 1°- 2°- 3°
Between the years: 1°- 2°- 3°
Altre attività formative
6
F
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




SPlacements in companies, public or private institutions and professional associations

Teaching code

4S00253

Credits

12

Coordinatore

Lidia Angeleri

The teaching is organized as follows:

Algebra lineare

Credits

6

Period

See the unit page

Academic staff

See the unit page

Elementi di geometria

Credits

6

Period

II sem.

Academic staff

Alberto Benvegnu'
Davide Rinaldi

Learning outcomes

------------------------
MM: ALGEBRA LINEARE
------------------------
First of all, the students are introduced to the language and formal reasoning required for the study of higher mathematics. Furthermore, the main notions and techniques of linear algebra and matrix theory are presented, focussing both on theoretical and computational aspects. Moreover, the course provides an introduction to planar and spatial analytic geometry, within the projective, affine, and euclidean setting. Finally, the main properties of conics will be discussed. Both analytical (coordinates, matrices) and synthetic tools will be employed.
------------------------
MM: ELEMENTI DI GEOMETRIA
------------------------
First of all, the students are introduced to the language and formal reasoning required for the study of higher mathematics. Furthermore, the main notions and techniques of linear algebra and matrix theory are presented, focussing both on theoretical and computational aspects. Moreover, the course provides an introduction to planar and spatial analytic geometry, within the projective, affine, and euclidean setting. Finally, the main properties of conics will be discussed. Both analytical (coordinates, matrices) and synthetic tools will be employed.

Program

Part 1: Groups, fields. The field of complex numbers. Matrices, matrix operations and their properties. Determinant and rank of a matrix. Inverse matrix. Systems of linear equations. The method of Gaussian elimination. Vector spaces, subspaces, bases, dimension. Linear maps.

Part 2: Eigenvalues and eigenvectors. Jordan canonical form. Affine and Euclidean spaces. Lines, planes, hyperplanes. Vector product and mixed product. Affine and isometric transformations. Projective spaces. Geometry of projective plane. Conics.

Examination Methods

------------------------
MM: ALGEBRA LINEARE
------------------------
The exam consists of: - a joint written examination on the module Linear Algebra and the module Elements of Geometry, - a joint oral examination on both modules. Only students who have passed the written examination will be admitted to the oral examination.
------------------------
MM: ELEMENTI DI GEOMETRIA
------------------------
see Linear Algebra

Type D and Type F activities

Modules not yet included

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details.

Attendance

As stated in point 25 of the Teaching Regulations for the A.Y. 2021/2022, except for specific practical or lab activities, attendance is not mandatory. Regarding these activities, please see the web page of each module for information on the number of hours that must be attended on-site.
Please refer to the Crisis Unit's latest updates for the mode of teaching.

Graduation

Attachments

List of theses and work experience proposals

theses proposals Research area
Formule di rappresentazione per gradienti generalizzati Mathematics - Analysis
Formule di rappresentazione per gradienti generalizzati Mathematics - Mathematics
Mathematics Bachelor and Master thesis titles Various topics
Stage Research area
Internship proposals for students in mathematics Various topics

Gestione carriere


Further services

I servizi e le attività di orientamento sono pensati per fornire alle future matricole gli strumenti e le informazioni che consentano loro di compiere una scelta consapevole del corso di studi universitario.