Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

A.A. 2012/2013

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
I semestre Oct 1, 2012 Jan 31, 2013
II semestre Mar 4, 2013 Jun 14, 2013
Exam sessions
Session From To
Sessione straordinaria Feb 4, 2013 Feb 28, 2013
Sessione estiva Jun 17, 2013 Jul 31, 2013
Sessione autunnale Sep 2, 2013 Sep 30, 2013
Degree sessions
Session From To
Sessione autunnale Oct 16, 2012 Oct 16, 2012
Sessione straordinaria Dec 10, 2012 Dec 10, 2012
Sessione invernale Mar 19, 2013 Mar 19, 2013
Sessione estiva Jul 22, 2013 Jul 22, 2013
Holidays
Period From To
Festa di Ognissanti Nov 1, 2012 Nov 1, 2012
Festa dell'Immacolata Concezione Dec 8, 2012 Dec 8, 2012
Vacanze di Natale Dec 21, 2012 Jan 6, 2013
Vacanze di Pasqua Mar 29, 2013 Apr 2, 2013
Festa della Liberazione Apr 25, 2013 Apr 25, 2013
Festa del Lavoro May 1, 2013 May 1, 2013
Festa del Santo Patrono di Verona - San Zeno May 21, 2013 May 21, 2013
Festa della Repubblica Jun 2, 2013 Jun 2, 2013
Vacanze estive Aug 9, 2013 Aug 16, 2013

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrolment FAQs

Academic staff

A B C D F M O R S Z

Angeleri Lidia

lidia.angeleri@univr.it 045 802 7911

Baldo Sisto

sisto.baldo@univr.it 045 802 7935

Bos Leonard Peter

leonardpeter.bos@univr.it +39 045 802 7987

Boscaini Maurizio

maurizio.boscaini@univr.it

Caliari Marco

marco.caliari@univr.it +39 045 802 7904

Daldosso Nicola

nicola.daldosso@univr.it +39 045 8027076 - 7828 (laboratorio)

Di Persio Luca

luca.dipersio@univr.it +39 045 802 7968

Ferro Ruggero

ruggero.ferro@univr.it 045 802 7909

Magazzini Laura

laura.magazzini@univr.it 045 8028525

Malachini Luigi

luigi.malachini@univr.it 045 8054933

Mantese Francesca

francesca.mantese@univr.it +39 045 802 7978

Marigonda Antonio

antonio.marigonda@univr.it +39 045 802 7809

Mariotto Gino

gino.mariotto@univr.it +39 045 8027031

Mariutti Gianpaolo

gianpaolo.mariutti@univr.it 045 802 8241

Menon Martina

martina.menon@univr.it 045 802 8420

Monti Francesca

francesca.monti@univr.it 045 802 7910

Morato Laura Maria

laura.morato@univr.it 045 802 7904

Orlandi Giandomenico

giandomenico.orlandi at univr.it 045 802 7986

Rizzi Romeo

romeo.rizzi@univr.it +39 045 8027088

Sansonetto Nicola

nicola.sansonetto@univr.it 049-8027932

Solitro Ugo

ugo.solitro@univr.it +39 045 802 7977
Marco Squassina,  January 5, 2014

Squassina Marco

marco.squassina@univr.it +39 045 802 7913

Zampieri Gaetano

gaetano.zampieri@univr.it +39 045 8027979

Zuccher Simone

simone.zuccher@univr.it

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

ModulesCreditsTAFSSD
6
A
(MAT/02)
6
B
(MAT/03)
6
B
(MAT/06)
One course chosen from the following two
6
C
(SECS-P/01)
6
C
(FIS/01)
One course chosen from the following two
6
C
(SECS-P/01)
ModulesCreditsTAFSSD
One course of 12 ECTS or two courses of 6 ECTS chosen from the following three
12
C
(SECS-S/06)
6
C
(MAT/07)
6
C
(MAT/06 ,SECS-P/05)
6
C
(SECS-S/06)
Prova finale
6
E
(-)

2° Year

ModulesCreditsTAFSSD
6
A
(MAT/02)
6
B
(MAT/03)
6
B
(MAT/06)
One course chosen from the following two
6
C
(SECS-P/01)
6
C
(FIS/01)
One course chosen from the following two
6
C
(SECS-P/01)

3° Year

ModulesCreditsTAFSSD
One course of 12 ECTS or two courses of 6 ECTS chosen from the following three
12
C
(SECS-S/06)
6
C
(MAT/07)
6
C
(MAT/06 ,SECS-P/05)
6
C
(SECS-S/06)
Prova finale
6
E
(-)
Modules Credits TAF SSD
Between the years: 1°- 2°- 3°
Other activities
6
F
-
Between the years: 1°- 2°- 3°

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




SPlacements in companies, public or private institutions and professional associations

Teaching code

4S00258

Coordinatore

Simone Zuccher

Credits

6

Scientific Disciplinary Sector (SSD)

MAT/07 - MATHEMATICAL PHYSICS

Language

Italian

Period

II semestre dal Mar 4, 2013 al Jun 14, 2013.

Learning outcomes

Derivation of the fluid-dynamic equations from conservation laws in Physics; discussion on the rheological structure of fluids and the model for Newtonian fluids; different flows and simplifications of the governing equations; Bernoulli theorem in all forms and for all cases; some exact solutions; vorticity dynamics; laminar boundary layer; stability and transition; turbulence; hyperbolic equations in fluid dynamics.

Program

1. Introduction to fluids: definitions, continuous hypothesis and properties of fluids; differences between fluid, flux, flow; some kinematics (stream-lines, trajectories, streak-lines), forces and stresses (Cauchy Theorem and symmetry of the stress tensor), the constitutive relation for Newtonian fluids (viscous stress tensor).

2. Governing equations: Eulerian vs Lagrangian approach; control volume and material volume, conservation of mass in a fixed volume, time derivative of the integral over a variable domain, Reynolds Theorem (scalar and vectorial forms), conservation of mass in a material volume, from conservation laws to the Navier-Stokes equations, the complete Navier-Stokes equations (in conservative, tensorial form), substantial derivative, conservative vs convective form of the equations, alternative forms of the energy equation, dimensionless equations, initial and boundary conditions.

3. Particular cases of the governing equations: time dependence, effect of viscosity, thermal conduction, entropy, compressibility, barotropic flows, incompressible flows, ideal flows, Euler equations irrotational flows, barotropic and non-viscous flows: Crocco's form, Bernoulli theorem in all cases and forms.

4. Some exact solutions: incompressible and parallel flows, infinite channel flow, Couette and Poiseuille flows, flow in a circular pipe, Hagen-Poiseuille solution.

5. Vorticity dynamics: preliminary definitions, vorticity equation in the general case, special cases (constant density, non-viscous flow with conservative external field), Kelvin's theorem, Helmholtz's theorems and their geometrical meaning.

6. Laminar boundary layer: Prandtl theory, boundary layer past a flat plate, derivation of Blasius' equation (similar solutions), boundary-layer thickness, drag due to skin-friction, characteristics of a boundary layer (displacement thickness, momentum thickness, shape factor), integral von Kàrmàn equation, numerical solution of the 2D steady equations for the boundary layer past a flat plate:
(a) parabolic PDE + BC (Prandtl's equations): marching in space
(b) ODE + BC (Blasius' equation): nonlinear boundary value problem
(c) comparison between the two methods.

7. Stability and transition: flow in a pipe - Reynolds' experiment, transition in a laminar boundary layer, linear stability for parallel flows (Orr-Sommerfeld equation),
Squire's theorem, non-viscous stability (Rayleigh's criteria), viscous stability, linear stability curves.

8. Turbulence: phenomenological characteristics, turbulent scales, energy cascade, Kolmogorov's theory, DNS (Direct numerical simulation), RANS (Reynolds-Averaged-Navier-Stokes equations), the problem of closure for the RANS, closure models, Boussinesq hypothesis for the tutbulent viscosity (models of order 0, 1 and 2), LES (Large Eddy Simulation).

9. Hyperbolic differential equations in fluid dynamics: main characteristics and comparison with parabolic and elliptic equations, conservation laws, transport equation, characteristic lines, Riemann problem, Burgers' equation, weak solutions, shock waves, rarefaction waves, comparison between conservative and non-conservative numerical methods, method of characteristics, usage of an applet for the visualization of shock and rarefaction waves, hyperbolic linear and non-linear systems, genuine nonlinearity, linear degeneration, contact discontinuity, solution of the Riemann for the Euler equations.

Examination Methods

The exams is an oral interview. During the oral part the students have to provide the solution to the exercises assigned during the course and to be able to discuss about them, because they contribute to the final grade together with the oral part.

Type D and Type F activities

Modules not yet included

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details.

Gestione carriere


Graduation

Attachments

List of theses and work experience proposals

theses proposals Research area
Formule di rappresentazione per gradienti generalizzati Mathematics - Analysis
Formule di rappresentazione per gradienti generalizzati Mathematics - Mathematics
Mathematics Bachelor and Master thesis titles Various topics
Stage Research area
Internship proposals for students in mathematics Various topics

Attendance

As stated in point 25 of the Teaching Regulations for the A.Y. 2021/2022, except for specific practical or lab activities, attendance is not mandatory. Regarding these activities, please see the web page of each module for information on the number of hours that must be attended on-site.
Please refer to the Crisis Unit's latest updates for the mode of teaching.

Further services

I servizi e le attività di orientamento sono pensati per fornire alle future matricole gli strumenti e le informazioni che consentano loro di compiere una scelta consapevole del corso di studi universitario.