Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Study Plan
This information is intended exclusively for students already enrolled in this course.If you are a new student interested in enrolling, you can find information about the course of study on the course page:
Laurea in Matematica applicata - Enrollment from 2025/2026The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.
1° Year
Modules | Credits | TAF | SSD |
---|
2° Year activated in the A.Y. 2023/2024
Modules | Credits | TAF | SSD |
---|
3° Year activated in the A.Y. 2024/2025
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
Mathematical analysis 3 (It will be activated in the A.Y. 2024/2025)
Teaching code
4S02756
Credits
6
Scientific Disciplinary Sector (SSD)
MAT/05 - ANALISI MATEMATICA
Learning objectives
Theory of function of one complex variable, and applications to calculus. Fourier transform and Laplace transform. Introduction to Partial Differential Equations. The aim is to provide the students with basic tools for addressing scientific issues which can be formalized in the language and methods of complex analysis and functional transforms. Theory of function of one complex variable, and applications to calculus. Fourier transform and Laplace transform. Introduction to Partial Differential Equations. The aim is to provide the students with basic tools for addressing scientific issues which can be formalized in the language and methods of complex analysis and functional transforms. At the end of the modules students should be able to show an adequate capacity of synthesis and abstraction, to perform rigorous proofs and to be able to formalize and solve moderately difficult problems related to the course syllabus.
Educational offer 2024/2025
You can see the information sheet of this course delivered in a past academic year by clicking on one of the links below: