Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Academic calendar
The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.
Course calendar
The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..
Period | From | To |
---|---|---|
I semestre | Oct 4, 2010 | Jan 31, 2011 |
II semestre | Mar 1, 2011 | Jun 15, 2011 |
Session | From | To |
---|---|---|
Sessione straordinaria | Feb 1, 2011 | Feb 28, 2011 |
Sessione estiva | Jun 16, 2011 | Jul 29, 2011 |
Sessione autunnale | Sep 1, 2011 | Sep 30, 2011 |
Session | From | To |
---|---|---|
Sessione autunnale | Oct 20, 2010 | Oct 20, 2010 |
Sessione straordinaria | Dec 14, 2010 | Dec 14, 2010 |
Sessione invernale | Mar 23, 2011 | Mar 23, 2011 |
Sessione estiva | Jul 18, 2011 | Jul 18, 2011 |
Period | From | To |
---|---|---|
All Saints | Nov 1, 2010 | Nov 1, 2010 |
National holiday | Dec 8, 2010 | Dec 8, 2010 |
Christmas holidays | Dec 22, 2010 | Jan 6, 2011 |
Easter holidays | Apr 22, 2011 | Apr 26, 2011 |
National holiday | Apr 25, 2011 | Apr 25, 2011 |
Labour Day | May 1, 2011 | May 1, 2011 |
Local holiday | May 21, 2011 | May 21, 2011 |
National holiday | Jun 2, 2011 | Jun 2, 2011 |
Summer holidays | Aug 8, 2011 | Aug 15, 2011 |
Exam calendar
Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.
Academic staff
Study Plan
The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.
1° Year
Modules | Credits | TAF | SSD |
---|
2° Year activated in the A.Y. 2011/2012
Modules | Credits | TAF | SSD |
---|
3° Year activated in the A.Y. 2012/2013
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
Discrete Biological Models (2012/2013)
Teaching code
4S01908
Teacher
Coordinator
Credits
6
Language
Italian
Scientific Disciplinary Sector (SSD)
INF/01 - INFORMATICS
Period
I semestre dal Oct 1, 2012 al Jan 31, 2013.
Learning outcomes
The course is designed to introduce several methodologies to model phenomena occurring in nature, by means of discrete mathematical tools and computational systems. The goal is to develop the ability of the student to master different approaches of discrete biological modeling, by means of the presentation of the state of the art and of the most recent problematics. Basic theoretical concepts (of mathematics, computer science, biology) are recalled, to better understand both traditional mathematical models and computational models of cellular and molecular processes, proposed along with a few case studies.
Program
Part I (traditional mathematical models)
Introduction to different classes of models, namely to discrete models
Discrete mathematics fundamentals - induction and recurrence
Fibonacci numbers and golden section in nature
Growth dynamics of microorganisms and of bacterial cultures
Malthusian biological population growth (extended) models
Iterative biological models, recurrence equations solving criteria
Logistic map: stability analysis, periodic orbits, and chaotic behaviour
Lotka-Volterra prey-predator model
Cobweb model of supply/demand interaction
An example of probabilistic model: gambler's ruin
Part II (non-conventional bioinformatics models)
Formal languages and biological grammars
Computational models of bio-molecular processes
Computational complexity of bio-algorithms and NP-completeness
Informational structure of DNA molecule, operations, experimental techniques
Amplification processes for string recombination and concatenation
DNA algorithms solving SAT
Self-assembly biomolecular processes
Discrete models of metabolism
Biological networks
Algorithmic procedures based on bacterial growth, and related experimental techniques
Author | Title | Publishing house | Year | ISBN | Notes |
---|---|---|---|---|---|
Garey, M. R. and Johnson, D. S. | Computers intractability: a guide to the theory of NP-completeness | Freeman | 1979 | 0-7167-1045-5 | |
Gheorghe Paun, Grzegorz Rozenberg, Arto Salomaa | DNA computing: new computing paradigms (Edizione 3) | Springer | 2013 | ||
David G. Luenberger | Introduction to Dynamic Systems - Theory, Models, and Applications | ||||
V. K. Balakrishnan | Introductory Discrete Mathematics |
Examination Methods
Oral exam, or a couple of written midterm exams
Teaching materials e documents
- DnaComputing+Alg.Adleman (pdf, it, 677 KB, 20/12/12)
- Esercizio (pdf, it, 41 KB, 23/01/13)
- RetiBiologiche_Metaboliche (pdf, it, 1005 KB, 17/01/13)
- Risultati Prova Parziale (pdf, it, 27 KB, 13/12/12)
- SAT-Alg.Jonoska (pdf, it, 269 KB, 20/12/12)
- TematicheDaApprofondire (pdf, it, 18 KB, 18/01/13)
- XPCR-DnaExtr+Recomb (pdf, it, 231 KB, 20/12/12)
Type D and Type F activities
Modules not yet included
Career prospects
Module/Programme news
News for students
There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details: only in this way will you be able to receive notification of all the notices from your teachers and your secretariat via email and also via the Univr app.
Tutoring faculty members
Graduation
Attendance modes and venues
As stated in the Teaching Regulations, attendance at the course of study is not mandatory.
Part-time enrolment is permitted. Find out more on the Part-time enrolment possibilities page.
The course's teaching activities take place in the Science and Engineering area, which consists of the buildings of Ca‘ Vignal 1, Ca’ Vignal 2, Ca' Vignal 3 and Piramide, located in the Borgo Roma campus.
Lectures are held in the classrooms of Ca‘ Vignal 1, Ca’ Vignal 2 and Ca' Vignal 3, while practical exercises take place in the teaching laboratories dedicated to the various activities.