Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Study Plan
Queste informazioni sono destinate esclusivamente agli studenti e alle studentesse già iscritti a questo corso. Se sei un nuovo studente interessato all'immatricolazione, trovi le informazioni sul percorso di studi alla pagina del corso:
Laurea in Informatica - Immatricolazione dal 2025/2026.The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.
1° Year
Modules | Credits | TAF | SSD |
---|
Mathematical analysis 1
Computer Architecture
2° Year activated in the A.Y. 2023/2024
Modules | Credits | TAF | SSD |
---|
3° Year activated in the A.Y. 2024/2025
Modules | Credits | TAF | SSD |
---|
1 module among the following
Modules | Credits | TAF | SSD |
---|
Mathematical analysis 1
Computer Architecture
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
1 module among the following
Modules | Credits | TAF | SSD |
---|
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
Computer Architecture [Matricole dispari] (2022/2023)
Teaching code
4S00011
Credits
12
Language
Italian
Also offered in courses:
- Computer architectures and networks with laboratory of the course Bachelor's degree in Human Centered Medical System Engineering
Scientific Disciplinary Sector (SSD)
ING-INF/05 - INFORMATION PROCESSING SYSTEMS
The teaching is organized as follows:
Teoria base
Teoria avanzata
Laboratorio
Esercitazioni
Learning objectives
This course presents the theoretical and practical knowledge to implement an algorithm into a digital architecture. Some design alternatives are presented ranging from a pure software, running on a general purpose computer, to an ad-hoc hardware implementation. At the end of the course, the student shall prove: to possess the practical and theoretical notions required for the digital realization of an algorithm, along with an understanding of the issues related to hardware implementation of such algorithms; to be able to apply the acquired notions for the identification of the requirements of a machine able to realize the given task; to evaluate the underlying complexity of the digital realization; to be able to present the main features of a project developed autonomously, and to interact with colleagues when working on a common project; to be able to autonomously build the competences required to continue studies in the field of digital systems design.
Prerequisites and basic notions
As a first year course, no particular prerequisites are required other than the so called minimum knowledge.
Program
Theory
----------
* Fundamentals:
- information coding,
- Boolean functions,
- arithmetic.
* Digital devices design:
- combinational circuits,
- sequential circuits,
- controller-datapath circuits,
- programmable units.
* Computer architecture:
- basic principles,
- instruction set,
- elaboration unit,
- memory hierarchy,
- I/O organization,
- actual architectures (cache, virtual memory, pipeline),
- parallel architectures.
Laboratory:
-----------------
* Automatic design of a programmable device
* Assembly programming of the Intel 80X86 architecture
* Interaction between assembly and high-level code
Bibliography
Didactic methods
Each frontal lesson is exemplified by specific classroom exercises and laboratory activities. Support and in-depth material is available on the elearning site.
Recordings of all lessons are available on the Moodle pages of the A.Y. 21/22.
Learning assessment procedures
Written exam, divided into two partial tests, and evaluation of two summary exercises of the laboratory activities.
Evaluation criteria
To pass the exam, the students must show that:
- they are able to design a digital device,
- they have understood the principles of a computer architecture,
- they are able to program in assembly code by correcly interacting with all computer components,
- they are able to apply the acquired knowledge to solve application scenarios described by means of exercises,, questions and projects.
Criteria for the composition of the final grade
Theory comprehension is checked through a written examination, eventually divided in parts that will be checked during each semester.
Practical skills are evaluated through two designs which can have a maximal impact of 4/30 on the final mark.
Theory without practical marks are preserved through examination sessions at the cost of a reduction.
Exam language
italiano