Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Study Plan

Queste informazioni sono destinate esclusivamente agli studenti e alle studentesse già iscritti a questo corso.
Se sei un nuovo studente interessato all'immatricolazione, trovi le informazioni sul percorso di studi alla pagina del corso:

Laurea in Informatica - Immatricolazione dal 2025/2026.

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.

2° Year  activated in the A.Y. 2023/2024

ModulesCreditsTAFSSD
12
B
INF/01
6
C
FIS/01
6
B
ING-INF/05
6
C
ING-INF/04
12
B
ING-INF/05

3° Year  activated in the A.Y. 2024/2025

ModulesCreditsTAFSSD
12
B
ING-INF/05
Final exam
6
E
-
activated in the A.Y. 2023/2024
ModulesCreditsTAFSSD
12
B
INF/01
6
C
FIS/01
6
B
ING-INF/05
6
C
ING-INF/04
12
B
ING-INF/05
activated in the A.Y. 2024/2025
ModulesCreditsTAFSSD
12
B
ING-INF/05
Final exam
6
E
-
Modules Credits TAF SSD
Between the years: 2°- 3°
Training
6
F
-
Between the years: 2°- 3°

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S00035

Coordinator

Claudia Daffara

Credits

6

Language

Italian

Scientific Disciplinary Sector (SSD)

FIS/01 - EXPERIMENTAL PHYSICS

Period

Semester 2 dal Mar 4, 2024 al Jun 14, 2024.

Courses Single

Authorized

Learning objectives

The course aims to provide the tools for the understanding of electromagnetism and optics phenomena in classical physics, from the basic physical principles to the methodologies for applying the physical laws to the solution of problems. At the end of the course the student will: - have to demonstrate knowledge and understanding in applied contexts of the foundations that make up the functioning of an electromagnetic physical system; - have the ability to apply the acquired knowledge and have understanding skills to model aspects of an electromagnetic physical problem or parts of a device; - know how to interpret the physical meaning of a measurement acquired with optoelectronic instruments; - have the ability to broaden the knowledge to deepen topics of electromagnetism in an autonomous way.

Prerequisites and basic notions

Physics 1.
Calculus tools from mathematical analysis 1 and 2 (differentiation, integration, vectorial operators).

Program

- ELECTROSTATICS IN VACUUM
Experimental facts. Electric charge. Structure of matter. Coulomb law. Electric field E. Work of the electric field. Electrostatic potential energy and electrostatic potential. Flux of the field E. Gauss law and applications. Discontinuities of the electric field. Differential equations of the electric field. Poisson and Laplace equations.
- ELECTROSTATICS IN CONDUCTORS
Conductors in equilibrium. Electrostatic induction. Electrostatic surface pressure. Cavity in a conductor. Electrostatic screening. Capacity. Capacitors.
- ELECTROSTATICS IN DIELECTRICS
Electric dipole. Dipole in external field E. Energy of a dipole. Uniform / non-uniform polarization. Linear dielectrics. Electrostatics equations in dielectrics. Field D "electric displacement".
- ELECTROSTATIC ENERGY
system of charges, system of conductors. Energy of a capacitor in vacuum and in dielectric media. Energy of the electric field. Motion of charges in electric field.
- ELECTRICAL CURRENTS
Electric current, electromotive force. Classical theory of electrical conduction. Continuity equation for the charge.
Ohm law, joule effect, resistors. Kirchhoff laws, elementary circuits. Charge / discharge of a capacitor.
- MAGNETOSTATIC IN VACUUM
Experimental facts. Magnetic field B, F of Lorentz, II law of Laplace. Motion of charges in magnetic field. Hall effect, measure of B. Magnetic dipole. Dipole in external field B. Field B of stationary currents. Circulation Ampère law and applications. Discontinuities of the magnetic field. I law of Laplace. Field B of a moving charge. Solenoidal fields, concatenated flux. Differential equations of the magnetic field.
- TIME-VARYING FIELDS
Electromagnetic induction - experimental facts, flux law. Induced electric field and Faraday law. Lenz law. Energy balance. Mutual Inductance. Self-inductance, inductances. RL circuit.
Magnetic energy: intrinsic energy of the current, system of stationary currents. Energy of the magnetic field.
Maxwell equations in integral and local form. Displacement current and Ampère-Maxwell law. Radiation of a circuit.
- ELECTROMAGNETIC WAVES (BASICS)
Recalls on waves: transverse waves, longitudinal waves, harmonic wave, plane waves, spherical waves. D'Alembert wave equation. Maxwell equations in vacuum and the solution of e.m waves. Polarization. Speed ​​of light, energy transported, intensity. Polarization. Electromagnetic spectrum. Principles of Optics.

Didactic methods

Theoretical lessons and exercises in classroom at the dashboard.

Learning assessment procedures

Written examination (2 hours):
The exam includes
1) electromagnetism exercises (related to the exercises program carried out);
2) theory questions (related to the entire program).
Optional oral examination:
on the topics of the course program

Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE

Evaluation criteria

- knowledge and understanding of the principles and the physical phenomena of classical electromagnetism
- to possess critical skills in the observation of electrical and magnetic phenomena with scientific method and adequate mathematical formalism
- to know how to apply the principles and the laws of physics to the different contexts for solving problems of electromagnetism.

Criteria for the composition of the final grade

Written examination contains three exercises (Electrostatics, Magnetism, Electromagnetism) + theoretical questions, for a total of 30/30.

Exam language

italiano