Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Study Plan
Queste informazioni sono destinate esclusivamente agli studenti e alle studentesse già iscritti a questo corso. Se sei un nuovo studente interessato all'immatricolazione, trovi le informazioni sul percorso di studi alla pagina del corso:
Laurea in Informatica - Immatricolazione dal 2025/2026.The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.
1° Year
Modules | Credits | TAF | SSD |
---|
Computer Architecture
2° Year activated in the A.Y. 2021/2022
Modules | Credits | TAF | SSD |
---|
3° Year activated in the A.Y. 2022/2023
Modules | Credits | TAF | SSD |
---|
1 module among the following
Modules | Credits | TAF | SSD |
---|
Computer Architecture
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
1 module among the following
Modules | Credits | TAF | SSD |
---|
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
Biomedical Data and Signal Processing (2022/2023)
Teaching code
4S008201
Credits
6
Language
Italian
Scientific Disciplinary Sector (SSD)
ING-INF/06 - ELECTRONIC AND INFORMATICS BIOENGINEERING
The teaching is organized as follows:
Teoria
Laboratorio
Learning objectives
The aim of this course is to provide the basic knowledge of methods and models for biomedical sig- nal and image processing, developing the ability to analyze and solve problems of interest, mainly in the biomedical field. Each technique presented will be accompanied by applications on simulated and real signals. At the end of the course, the student will be able to show knowledge of the main methods of biomedical signals and image processing. They will possess the ability to formulate, ana- lyze and solve problems of interest in bioengineering, through the acquired theoretical and practical basic knowledge. Finally, the student will be able to evaluate the traditional methods in the biomedical sciences in order to devise new approaches to methodological problems with clinical reversibility.
Prerequisites and basic notions
-
Program
------------------------
MM: Teoria
------------------------
(1) Main biomedical signals and images. Origin, characteristics and acquisition of the main bioelectric signals (electroencephalographic signal - EEG, magnetoencephalographic – MEG, electrocardiographic - ECG, electromyographic - EMG, spontaneous and induced signals, evoked potentials - EP, event-related potentials - ERP); introduction to bioimaging. (2) Analysis techniques in the time and frequency domains. Fundamentals of digital signal processing and characterization in the time domain. Digital filtering methods, sampling, A/D conversion. Classic methods for frequency analysis; frequency bands and power spectrum, periodogram; time/frequency resolution; bispectra and coherence; feature extraction methods. Brain source imaging (direct and inverse problems for EEG and MEG signals) and functional and effective connectivity analysis methods. Applications on in-silico and real signals. (3) Statistical analysis of biomedical data. Review of basic concepts of descriptive and inferential statistics. Description of the measurement error, statistical description of the experimental data: statistical indices, confidence intervals, hypothesis test and significance level, simple and multivariate linear regression for biomedical signals and images. (4) Brain-computer interfaces. Introduction to the main data processing methods that allow to decode brain activity in real time and convert it into a control signal for a brain-computer interface. We will discuss the BCI model and its historical context, the invasive and non-invasive techniques allowing to measure in real time the responses of an individual to particular stimuli, the data interpretation (filtering, future extraction, classification) and the BCI technology.
------------------------
MM: Laboratorio
------------------------
The course includes a series of laboratories in the computer lab with hands-on activities mainly in MATLAB environment aimed at familiarizing students with the main analysis methods of biomedical signals and images (e.g. ECG, EMG, EEG, evoked potentials, functional magnetic resonance imaging - fMRI). The laboratories also foresee a project activity in small groups for the solution of problems related to the analysis of biomedical data. The laboratories complement lectures by consolidating learning and developing problem-solving and hands-on practical skills in the context of bioengineering.
Bibliography
Didactic methods
Teaching methods. Regular lectures with power point presentation and blackboard, laboratory exercises and projects. The course approach is "hands on" where students will experiment the design and data analysis with the most suitable methodologies to solve real-life clinical-medical problems. Educational material will be available to students enrolled in the course on the Moodle platform. This material includes lecture presentations in PDF format and material related to laboratory activities. For further details and supplementary materials, please refer to the reference books.
Learning assessment procedures
Assessment is conducted via oral examination preceded by a discussion on the group project assigned during the lab.
Evaluation criteria
To pass the exam, the students must show that: - they have understood the theoretical and practical concepts of the course; - they are able to use the knowledge acquired during the course to solve the assigned problems related to the processing of biomedical signals and data; - they are able to program in MATLAB environment in the context of signal and biomedical data processing.
Criteria for the composition of the final grade
The final grade will be the average of the two grades (2/3 theory, 1/3 lab).
Exam language
Italiano