Studiare
In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.
Calendario accademico
Il calendario accademico riporta le scadenze, gli adempimenti e i periodi rilevanti per la componente studentesca, personale docente e personale dell'Università. Sono inoltre indicate le festività e le chiusure ufficiali dell'Ateneo.
L’anno accademico inizia il 1° ottobre e termina il 30 settembre dell'anno successivo.
Calendario didattico
Il calendario didattico indica i periodi di svolgimento delle attività formative, di sessioni d'esami, di laurea e di chiusura per le festività.
Periodo | Dal | Al |
---|---|---|
I semestre | 1-ott-2018 | 31-gen-2019 |
II semestre | 4-mar-2019 | 14-giu-2019 |
Sessione | Dal | Al |
---|---|---|
Sessione invernale d'esame | 1-feb-2019 | 28-feb-2019 |
Sessione estiva d'esame | 17-giu-2019 | 31-lug-2019 |
Sessione autunnale d'esame | 2-set-2019 | 30-set-2019 |
Sessione | Dal | Al |
---|---|---|
Sessione estiva | 12-lug-2019 | 12-lug-2019 |
Sessione autunnale | 18-ott-2019 | 18-ott-2019 |
Sessione invernale | 13-mar-2020 | 13-mar-2020 |
Periodo | Dal | Al |
---|---|---|
Sospensione dell'attività didattica | 2-nov-2018 | 3-nov-2018 |
Vacanze di Natale | 24-dic-2018 | 6-gen-2019 |
Vacanze di Pasqua | 19-apr-2019 | 28-apr-2019 |
Vacanze estive | 5-ago-2019 | 18-ago-2019 |
Calendario esami
Gli appelli d'esame sono gestiti dalla Unità Operativa Segreteria Corsi di Studio Scienze e Ingegneria.
Per consultazione e iscrizione agli appelli d'esame visita il sistema ESSE3.
Per problemi inerenti allo smarrimento della password di accesso ai servizi on-line si prega di rivolgersi al supporto informatico della Scuola o al servizio recupero credenziali
Docenti
Piano Didattico
Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.
1° Anno
Insegnamenti | Crediti | TAF | SSD |
---|
2° Anno Attivato nell'A.A. 2019/2020
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Legenda | Tipo Attività Formativa (TAF)
TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.
Tipologia di Attività formativa D e F
Insegnamenti non ancora inseriti
Research-inspired laboratory (2018/2019)
Codice insegnamento
4S003669
Crediti
6
Lingua di erogazione
Inglese
Settore Scientifico Disciplinare (SSD)
BIO/10 - BIOCHIMICA
L'insegnamento è organizzato come segue:
d [turno 1]
d [turno 2]
d [turno 3]
e
c [turno 1]
c [turno 2]
c [turno 3]
b
a [turno 1]
a [turno 2]
a [turno 3]
Obiettivi formativi
Il corso è articolato in 5 moduli di laboratorio interdisciplinari centrato su un argomento di rilevanza biologica. Lo scopo principale del corso è quello di offrire allo studente strumenti per focalizzare il problema sfruttando diverse tecniche altamente complementari.
Il modulo di GENETICA ha lo scopo di fornire competenze sugli approcci sperimentali e le analisi bioinformatiche necessarie all’identificazione di varianti genetiche associate a specifiche condizioni patologiche e la loro validazione.
Il modulo di INGEGNERIA PROTEICA ha lo scopo di fornire allo studente informazioni specifiche sui principi e le tecniche utilizzate nell'ambito dell'ingegneria proteica, con particolare riferimento alla produzione di proteine ricombinanti in sistemi eterologhi.
Il modulo di BIOINFORMATICA ha lo scopo di introdurre i metodi computazionali utilizzati oggi per la predizione dell'effetto di varianti associate a malattie sulla struttura/funzione delle proteine. Al termine dell’insegnamento lo studente dovrà dimostrare di essere in grado di utilizzare i metodi computazionali allo stato dell'arte per la predizione dell'effetto dei mutanti a partire della sequenza e della struttura delle proteine.
Il modulo di PROTEOMICA DI ESPRESSIONE DIFFERENZIALE si prefigge l’obiettivo di far acquisire manualità di laboratorio per l’allestimento di un esperimento di proteomica differenziale. L’esperimento potrà essere mirato al confronto di un campione patologico con un campione controllo per l’identificazione di potenziali biomarcatori di utilità clinica; oppure mirato al confronto di un campione cellullare trattato o non con un farmaco per il riconoscimento del meccanismo d’azione molecolare del farmaco stesso.
Il modulo di PROTEOMICA FUNZIONALE si prefigge l’obiettivo di far acquisire manualità di laboratorio per l’allestimento di un esperimento di proteomica targeted, tramite design, preparazione ed applicazione di materiali biomimetici per la cattura selettiva della proteina target in campioni biologici.
Programma
------------------------
MM: a
------------------------
Introduzione all’ingegneria proteica. Progettazione di un esperimento di base di ingegneria proteica. Metodi di espressione di proteine ricombinanti (sistemi procarioti ed eucarioti). Esempi specifici di proteine ingegnerizzate e loro studio (mutagenesi sito specifica, Gel elettroforesi, fluorescenza intrinseca e fluorescenza basata sull’utilizzo del probe, proteolisi limitata).
------------------------
MM: b
------------------------
Il modulo si svolgerà interamente in un laboratorio didattico computerizzato. Durante il corso si farà riferimento all'articolo: Predicting the Effects of Amino Acid Substitutions on Protein Function scritto da Pauline C. Ng and Steven Henikoff e pubblicato sul giornale: Annual Review of Genomics and Human Genetics. Le tecniche presentate nell'articolo saranno brevemente introdotte a lezione, per dopo utilizzare i metodi per analizzare l'effetto di mutanti sulla Calmodulina umana. Metodi da utilizzare: Sequence based methods: - Sift - PolyPhen - Panther - PSEC Strcture based methds - Analisi della struttura proteica utilizzando il programma Chimera - Introudrre il mutante nella proteina wild-type - analisi delle interazioni perdute/uadagnate rispetto al wild-type - Studio del potenziale elettorstatico sulla superficie della proteina (wld-type e mutata) Annotation based methods: - iHop - Pfam
------------------------
MM: c
------------------------
Il modulo proteomica di espressione comprenderà esperienze pratiche fondamentali per un laboratorio di proteomica, ad esempio la quantificazione di un estratto proteico per l’analisi proteomica, la separazione delle proteine tramite mappe elettroforetiche bidimensionali, la rivelazione del profilo proteomico con diversi metodi di colorazione (colorimetrico e fluorescente), l’acquisizione dei profili proteomici, ed un’introduzione all’identificazione delle proteine deregolate tramite spettrometria di massa.
------------------------
MM: d
------------------------
Il modulo di proteomica funzionale permetterà di approcciare l'area di ricerca della biomimesi. Le esercitazioni verteranno su: Disegno razionale in silico del miglior epitopo di una data proteina. Preparazione del materiale biomimetico. Caratterizzazione funzionale del materiale biomimetico. Applicazione del materiale biomimetico per l'arricchimento selettivo della proteina target da campioni biologici e conferma tramite analisi in 2DE della frazione arricchita. Modelling in silico della corona proteica.
------------------------
MM: e
------------------------
L’obiettivo del modulo di genetica è l’identificazione di varianti geniche a singolo nucleotide associate o causative di specifiche condizioni patologiche. Il corso permetterà di acquisire le seguenti competenze: come identificare i geni associati alla patologia oggetto di studio, come selezione l’approccio sperimentale per catturare i geni di interesse, come svolgere le fasi sperimentali per la produzione dei dati di sequenziamento e la loro analisi bioinformatica, e come validare i marker identificati.
Bibliografia
Attività | Autore | Titolo | Casa editrice | Anno | ISBN | Note |
---|---|---|---|---|---|---|
c | Josip Lovric | Introducing Proteomics: From concepts to sample separation, mass spectrometry and data analysis | Wiley | 2011 | 978-0-470-03524-5 | |
c | Josip Lovric | Introducing Proteomics: From concepts to sample separation, mass spectrometry and data analysis | Wiley | 2011 | 978-0-470-03524-5 | |
c | Josip Lovric | Introducing Proteomics: From concepts to sample separation, mass spectrometry and data analysis | Wiley | 2011 | 978-0-470-03524-5 | |
b | Stefano Pascarella e Alessandro Paiardini | Bioinformatica | Zanichelli | 2011 | 9788808062192 | |
a | M. C. Bonaccorsi di Patti, R. Contestabile, M. L. Di Salvo | Metodologie Biochimiche (Edizione 2) | Zanichelli | 2019 | ||
a | M. C. Bonaccorsi di Patti, R. Contestabile, M. L. Di Salvo | Metodologie Biochimiche (Edizione 2) | Zanichelli | 2019 | ||
a | Wilson, Walker | Principles and Techniques of Biochemistry and Molecular Biology | Cambridge University Press | 2010 | ||
a | M. C. Bonaccorsi di Patti, R. Contestabile, M. L. Di Salvo | Metodologie Biochimiche (Edizione 2) | Zanichelli | 2019 | ||
a | Wilson, Walker | Principles and Techniques of Biochemistry and Molecular Biology | Cambridge University Press | 2010 |
Modalità d'esame
La comprensione delle esperienze pratiche e l'acquisizione dei concetti sottesi alle esperienze, sarà verificata attraverso domande aperte (2 bioinformatica, 2 ingegneria proteica; 2 proteomica di espressione; 2 genetica e 3 proteomica funzionale) in una prova scritta globale composta da un totale di 10 domande, da svolgere in un tempo di 3 ore
Prospettive
Avvisi degli insegnamenti e del corso di studio
Per la comunità studentesca
Se sei già iscritta/o a un corso di studio, puoi consultare tutti gli avvisi relativi al tuo corso di studi nella tua area riservata MyUnivr.
In questo portale potrai visualizzare informazioni, risorse e servizi utili che riguardano la tua carriera universitaria (libretto online, gestione della carriera Esse3, corsi e-learning, email istituzionale, modulistica di segreteria, procedure amministrative, ecc.).
Entra in MyUnivr con le tue credenziali GIA: solo così potrai ricevere notifica di tutti gli avvisi dei tuoi docenti e della tua segreteria via mail e anche tramite l'app Univr.
Prova Finale
Scadenziari e adempimenti amministrativi
Per gli scadenziari, gli adempimenti amministrativi e gli avvisi sulle sessioni di laurea, si rimanda al servizio Sessioni di laurea - Scienze e Ingegneria.
Necessità di attivare un tirocinio per tesi
Per stage finalizzati alla stesura della tesi di laurea, non è sempre necessaria l'attivazione di un tirocinio tramite l'Ufficio Stage. Per maggiori informazioni, consultare il documento dedicato, che si trova nella sezione "Documenti" del servizio dedicato agli stage e ai tirocini.
Regolamento della prova finale
La laurea magistrale si consegue con il superamento di una prova finale che consiste nella preparazione e nella discussione di un elaborato individuale redatto dallo studente in lingua inglese, nel quale il candidato metterà in evidenza le esperienze acquisite ed il lavoro di ricerca sperimentale svolto su una tematica specifica presso laboratori di ricerca universitari, oppure presso qualificate istituzioni o enti pubblici o privati del settore biotecnologico. L'elaborato sarà preparato dallo studente sotto la supervisione di un docente-tutore. Per essere ammessi alla prova finale lo studente deve aver conseguito tutti i crediti nelle attività formative previste dal piano di studi ad eccezione di quelli riservati alla prova finale stessa. La commissione preposta alla prova finale esprime una valutazione riferita all'intero percorso di studi tenendo conto della coerenza tra obbiettivi formativi e obbiettivi professionali, la capacità di elaborazione intellettuale e di comunicazione e la maturità culturale del candidato.
Alla prova finale sono dedicati 40 CFU. La tesi potrà essere discussa sia in lingua inglese che in lingua italiana
.Ogni Tesi può essere svolta presso l’Università di Verona o in collaborazione con altro ente. Ogni Tesi di Laurea prevede un Relatore, eventualmente affiancato da uno o più Correlatori, e due Controrelatori. Nel loro insieme essi costituiscono la Commissione di Valutazione. La Commissione di Valutazione è costituita da un Relatore e due Controrelatori.
Può rivestire il ruolo di Relatore ogni docente afferente ai Dipartimenti della Scuola di Scienze e Ingegneria o della Scuola di Medicina e Chirurgia dell’Ateneo. Possono svolgere il ruolo di Correlatori i ricercatori operanti in Istituti di ricerca extrauniversitari, assegnisti di ricerca, titolari di borsa di studio post-dottorato, dottorandi di ricerca. I Controrelatori devono essere docenti appartenenti alla Scuola di Scienze e Ingegneria o alla Scuola di Medicina e Chirurgia dell’Ateneo. Sono nominati dalla Commissione Didattica almeno 25 giorni prima della discussione della tesi di laurea, verificata l’ammissibilità dello studente a sostenere la prova finale.
I lavori della Commissione di Valutazione non sono regolati da convocazioni ufficiali e hanno luogo su accordo tra i soggetti interessati entro i 15 giorni precedenti la seduta di Laurea, nella quale si procederà alla sola proclamazione. Alla fine della presentazione, la Commissione di Valutazione stilerà una breve nota dı̀ valutazione con espressione di un voto sintetico (da 0 a 8). Questa nota sarà trasferita alla Segreteria di Corso di Laurea, entro il giorno precedente la seduta di laurea, per la successiva formulazione del voto definitivo da parte della Commissione di Laurea che procederà alla proclamazione.
Valutazione delle Tesi
Per ogni presentazione sono a disposizione circa 30 minuti più la discussione. I criteri su cui è chiamata ad esprimersi la Commissione di Valutazione sono i seguenti:
- livello di approfondimento del lavoro svolto, in relazione allo stato dell’arte dei settori disciplinari di pertinenza alle Biotecnologie Molecolari e Mediche;
- avanzamento conoscitivo e/o tecnologico apportato dalla Tesi;
- impegno critico espresso dal laureando;
- impegno sperimentale espresso dal laureando;
- autonomia di lavoro espressa dal laureando;
- significatività delle metodologie impiegate;
- accuratezza nell’impostazione e nella stesura della tesi;
- chiarezza espositiva.
I Controrelatori non sono chiamati ad esprimersi sul punto 5.
Voto di Laurea
Il voto di Laurea (espresso in 110mi) è un valore intero compreso tra 66/110 e 110/110 e viene formato dalla somma, arrotondata al numero intero più vicino (e.g., 93.50 diventa 94, 86.49 diventa 86), dei seguenti addendi:
- media pesata sui crediti e rapportata a 110 dei voti conseguiti negli esami di profitto;
- valutazione del colloquio di Laurea e della Tesi secondo le seguenti modalità:
- a) Al colloquio di Laurea e alla Tesi sono attribuiti al massimo 11 punti. Essi saranno così distribuiti: 8 punti alla Commissione di Valutazione che valuterà il colloquio di Laurea e la Tesi secondo le seguenti modalità: attribuzione di un coefficiente compreso tra 0 e 1 (frazionario con una cifra decimale) per ciascuno dei punti 1-8 elencati sopra;
- b) 3 punti alla Commissione di Laurea che si esprime in modo assembleare. La commissione di Laurea attribuirà i punti in base alla valutazione del curriculum del laureando. In particolare: la presenza di eventuali lodi ottenute negli esami sostenuti, la partecipazione a stage ufficialmente riconosciuti dall’Ateneo, il superamento di esami in soprannumero ed il raggiungimento della Laurea in tempi contenuti rispetto alla durata normale del corso degli studi possono essere utilizzati dalla Commissione per l’attribuzione del punteggio. Al candidato che ottiene meno di 11 punti per la tesi verranno attribuiti 2 punti in più nel caso in cui (a) abbia acquisito il riconoscimento in carriera di almeno 12 CFU conseguiti in mobilità internazionale, e (b) consegua il titolo finale entro la durata normale del Corso di Studi.
- c) somma del punteggio derivante da a) e b).
Qualora la somma finale raggiunga 110/110, la Commissione di Laurea può decidere l’attribuzione della lode. Nel caso della proposta di laurea con lode lo studente deve avere:
- una media ponderata minima di 104/110 (senza arrotondamenti) oppure
- una media ponderata minima di 102/110 (senza arrotondamenti) e aver conseguito almeno n. 3 lodi. In base alle norme vigenti, la lode viene attribuita solo se il parere è unanime.
Tesi esterne
Una Tesi esterna viene svolta in collaborazione con un ente diverso dall’Università di Verona. In tal caso, il laureando dovrà preventivamente concordare il tema della Tesi con un relatore del Corso di laurea LM9. E’ previsto almeno un correlatore appartenente all’ente esterno, quale riferimento immediato per lo studente nel corso dello svolgimento dell’attività di Tesi. Relatore e Correlatori devono essere indicati nella domanda di assegnazione Tesi. I risultati contenuti nella Tesi sono patrimonio in comunione di tutte le persone ed Enti coinvolti. In particolare, i contenuti ed i risultati della Tesi sono da considerarsi pubblici.
Elenco delle proposte di tesi
Proposte di tesi | Area di ricerca |
---|---|
Studio delle proprietà di luminescenza di lantanidi in matrici proteiche | Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry - Colloid chemistry |
Modalità e sedi di frequenza
Come riportato nel Regolamento Didattico, non è previsto un obbligo generalizzato di frequenza. I singoli docenti sono tuttavia liberi di richiedere un minimo di ore di frequenza per l’ammissibilità̀ all’esame di profitto dell’insegnamento di cui sono titolari. In tal caso il controllo della frequenza alle attività didattiche è stabilito secondo modalità preventivamente comunicate agli studenti.
È consentita l'iscrizione a tempo parziale. Per saperne di più consulta la pagina Possibilità di iscrizione Part time.
Le attività didattiche del corso di studi si svolgono negli spazi dell’area di Scienze e Ingegneria che è composta dagli edifici di Ca’ Vignal 1, Ca’ Vignal 2, Ca’ Vignal 3 e Piramide, siti nel polo di Borgo Roma, Villa Lebrecht e Villa Eugenia siti nel polo di San Floriano di Valpolicella.
Le lezioni frontali si tengono nelle aule di Ca’ Vignal 1, Ca’ Vignal 2, Ca’ Vignal 3 mentre le esercitazioni pratiche nei laboratori didattici dedicati alle varie attività.
Caratteristiche dei laboratori didattici a disposizione degli studenti
- Laboratorio Alfa
- 50 PC disposti in 13 file di tavoli
- 1 PC per docente collegato a un videoproiettore 8K Ultra Alta Definizione per le esercitazioni
- Configurazione PC: Intel Core i3-7100, 8GB RAM, 250GB SSD, monitor 24", Linux Ubuntu 24.04
- Tutti i PC sono accessibili da persone in sedia a rotelle
- Laboratorio Delta
- 120 PC in 15 file di tavoli
- 1 PC per docente collegato a due videoproiettori 4K per le esercitazioni
- Configurazione PC: Intel Core i3-7100, 8GB RAM, 250GB SSD, monitor 24", Linux Ubuntu 24.04
- Un PC è su un tavolo ad altezza variabile per garantire un accesso semplificato a persone in sedia a rotelle
- Laboratorio Gamma (Cyberfisico)
- 19 PC in 3 file di tavoli
- 1 PC per docente con videoproiettore 4K
- Configurazione PC: Intel Core i7-13700, 16GB RAM, 512GB SSD, monitor 24", Linux Ubuntu 24.04
- Laboratorio VirtualLab
- Accessibile via web: https://virtualab.univr.it
- Emula i PC dei laboratori Alfa/Delta/Gamma
- Usabile dalla rete universitaria o tramite VPN dall'esterno
- Permette agli studenti di lavorare da remoto (es. biblioteca, casa) con le stesse funzionalità dei PC di laboratorio
Caratteristiche comuni:
- Tutti i PC hanno la stessa suite di programmi usati negli insegnamenti di laboratorio
- Ogni studente ha uno spazio disco personale di XXX GB, accessibile da qualsiasi PC
- Gli studenti quindi possono usare qualsiasi PC in qualsiasi laboratorio senza limitazioni ritrovando sempre i documenti salvati precedentemente
Questa organizzazione dei laboratori offre flessibilità e continuità nel lavoro degli studenti, consentendo l'accesso ai propri documenti e all'ambiente di lavoro da qualsiasi postazione o da remoto.