Studiare
In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.
Calendario accademico
Il calendario accademico riporta le scadenze, gli adempimenti e i periodi rilevanti per la componente studentesca, personale docente e personale dell'Università. Sono inoltre indicate le festività e le chiusure ufficiali dell'Ateneo.
L’anno accademico inizia il 1° ottobre e termina il 30 settembre dell'anno successivo.
Calendario didattico
Il calendario didattico indica i periodi di svolgimento delle attività formative, di sessioni d'esami, di laurea e di chiusura per le festività.
Periodo | Dal | Al |
---|---|---|
I semestre | 1-ott-2020 | 29-gen-2021 |
II semestre | 1-mar-2021 | 11-giu-2021 |
Sessione | Dal | Al |
---|---|---|
Sessione invernale d'esame | 1-feb-2021 | 26-feb-2021 |
Sessione estiva d'esame | 14-giu-2021 | 30-lug-2021 |
Sessione autunnale d'esame | 1-set-2021 | 30-set-2021 |
Sessione | Dal | Al |
---|---|---|
Sessione Estiva | 15-lug-2021 | 15-lug-2021 |
Sessione Autunnale | 15-ott-2021 | 15-ott-2021 |
Sessione Invernale | 15-mar-2022 | 15-mar-2022 |
Periodo | Dal | Al |
---|---|---|
Festa dell'Immacolata | 8-dic-2020 | 8-dic-2020 |
Vacanze Natalizie | 24-dic-2020 | 3-gen-2021 |
Epifania | 6-gen-2021 | 6-gen-2021 |
Vacanze Pasquali | 2-apr-2021 | 5-apr-2021 |
Festa del Santo Patrono | 21-mag-2021 | 21-mag-2021 |
Calendario esami
Gli appelli d'esame sono gestiti dalla Unità Operativa Segreteria Corsi di Studio Scienze e Ingegneria.
Per consultazione e iscrizione agli appelli d'esame visita il sistema ESSE3.
Per problemi inerenti allo smarrimento della password di accesso ai servizi on-line si prega di rivolgersi al supporto informatico della Scuola o al servizio recupero credenziali
Docenti
Piano Didattico
Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.
1° Anno
Insegnamenti | Crediti | TAF | SSD |
---|
2° Anno Attivato nell'A.A. 2021/2022
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Legenda | Tipo Attività Formativa (TAF)
TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.
Biomedical decision support systems (2021/2022)
Codice insegnamento
4S004553
Docente
Coordinatore
Crediti
6
Lingua di erogazione
Inglese
Settore Scientifico Disciplinare (SSD)
INF/01 - INFORMATICA
Periodo
Secondo semestre dal 7-mar-2022 al 10-giu-2022.
Obiettivi formativi
Il corso si propone di fornire conoscenze avanzate per la gestione e l’analisi di grosse quantità di dati (in particolare dati provenienti dall’ambito biomedico). Fornire le basi teoriche e pratiche delle principali tecniche di data mining applicate sia in generale che in domini clinici. Conoscenza e capacità di comprensione A completamento del corso, gli studenti saranno in grado di: - orientarsi nell’utilizzo delle principali componenti comuni alle suite di Business Intelligence presenti sul mercato. In particolare gli studenti saranno in grado di scegliere e configurare la/le opportuna/e componente/i per fornire soluzioni al supporto delle decisioni destinate al personale medico sanitario; - realizzare complesse operazioni di Estrazione, Trasformazione & Caricamento (ETL) di dati clinici da differenti sorgenti (Database Relazionali, API, siti web) sia di tipo strutturato (e.g., tabelle relazionali) che di tipo semistrutturato (e.g., XML); - modellare ed implementare soluzioni OLAP (On-Line Analytical Processing) per il supporto alle decisioni in ambito clinico; - utilizzare/adattare sofisticate tecniche di data mining (Dipendenze Funzionali Approssimate, Regole di Associazione, Classificatori basati su Entropia) per estrarre conoscenza da grosse quantità di dati clinici. Conoscenze applicate e capacità di comprensione Allo studente verranno fornite le conoscenze necessarie per gestire in modo autonomo: - la scelta e applicazione delle tecniche di data mining per l'estrazione di sapere medico da grosse quantità di dati; - la scelta delle rappresentazioni grafiche e interattive più appropriate per la visualizzazione di determinate informazioni in ambito clinico. Autonomia di giudizio Capacità di assegnare priorità corrette informazioni da visualizzare a seconda delle necessità dell’utente finale e comunicarle tramite sofisticate tecniche di visualizzazione dei dati. Abilità comunicative Capacità di comprendere il linguaggio proprio del dominio dell’utente e trasmettere la conoscenza estratta dai dati forniti utilizzando tale linguaggio. Capacità di apprendere Capacità di comprendere le tecniche e gli algoritmi alla base del data mining generale, comprensive dei fattori che ne determinano l'efficenza e l'efficacia. Capacità di riconoscere le variabili in gioco e l’output desiderato dall’utente in problemi di data mining clinico e di operare scelte autonome per la risoluzione di tali problemi.
Programma
Richiami sulle Dipendenze Funzionali (FD):
Richiami sulle FD, verifica e vincoli in presenza di FD in PostgreSQL.
Dipendenze Funzionali Approssimate (AFD):
Introduzione dell’approssimazione nelle FD come misura di confidenza. Estrazione di conoscenza clinica tramite AFD: esempi. Analisi di AFD estratte in ambito clinico.
Algoritmi per l’estrazione di AFD:
AFD minimali: definizione, significato e interpretazione. Lower Bound Teorici al numero di AFD minimali: la maledizione della cardinalità. Algoritmo base per l’estrazione di AFD minimali. Rappresentazioni compatte dell’insieme delle AFD estratte. Algoritmi randomizzati per l’estrazione di AFD Minimali: teoria ed implementazione.
Approssimazione in presenza di misure:
Delta Dipendenze Funzionali (DFD): definizione, applicazione, e verifica. Interpretazione di DFD estratte da dati clinici. DFD approssimate (ADFD):
definizione, applicazione ed interpretazione su dati clinici (esempi).
Algoritmo per la verifica di singole ADFD ristrette al caso di due misure (2ADFD):
studio di complessità, implementazione. Estrazione di 2ADFD minimali da dati clinici.
Regole di Associazione (AR):
definizione, esempi in ambito clinico. Estrazione di AR: supporto e confidenza. Analisi teorica delle regole di associazione: la maledizione della cardinalità. Insieme di oggetti frequenti (FI) :
definizione, ruolo nell’estrazione di AR, e algoritmi per la generazione di candidati. Estrazione di AR da insiemi di FI. Insiemi di FI: insiemi minimali, insiemi chiusi. Strategie per l’esporazione del reticolo degli FI. Strutture alternative per la estrazione di insiemi frequenti (hash trees, FP-trees). Valutazione dei pattern di associazione: problematiche del sistema supporto/confidenza. Esempi di paradossi. Misure alternative per l’analisi dei pattern di associazione: definizione ed esempi.
Estrazione Trasformazione e Caricamento (ETL):
definizione, funzioni, ruolo all’interno di un data warehouse, flussi di dati.
Componenti base delle procedure ETL e loro funzionamento:
Job, Trasformazioni, Job Step, Transformation Step.
Modellazione concettuale di procedure ETL in Business Process Model and Notation (BPMN). Esempi di modellazione: casi studio. Utilizzo di procedure esterne all’interno di procedure ETL: comunicazione, staging e gestione delle terminazioni anomale. Utilizzo di API (Application Programming Interface)
all’interno di procedure ETL. Breve descrizione dell’utilizzo di XPATH. Screen scraping di siti web in procedure ETL attraverso l’utilizzo di XPATH. Utilizzo della strumentazione presente all’interno delle suite di Business Intelligence per implementare procedure ETL.
Classificatori basati su Entropia:
il concetto di entropia. Alberi di decisione in ambito biomedico. Il classificatore Iterative Dichotomiser 3 (ID3): algoritmo, esempi e implementazione.
Discretizzazione delle misure. Utilizzo di ID3 come discretizzatore per misure: problematiche, modifiche e implementazione. Applicazione all’analisi temporale delle reazioni avverse da farmaco.
Reportistica e OLAP (Online Analytical Processing):
Reportistica interattiva: interrogazione delle basi di dati cliniche, parametrizzazione della reportistica. Recupero dinamico dei dati per la reportistica tramite trasformazioni ETL. Modellazioni di analisi con cubi OLAP e loro implementazione: casi di studio.
Utilizzo della strumentazione presente all’interno delle suite di Business Intelligence per implementare reportistica interattiva e dinamica e cubi OLAP.
TESTI CONSIGLIATI:
DJ Hand, H Mannila, P Smyth
Principles of data mining
MIT Press Cambridge, MA, USA ©2001
ISBN:0-262-08290-X 9780262082907
Roland Bouman, Jos van Dongen
Pentaho Solutions: Business Intelligence and Data Warehousing with Pentaho and MySQL
Wiley Publishing, Inc.
ISBN: 978-0-470-48432-6
648 pages
September 2009
Fulton, Hal and Olsen, Russ
The ruby way: solutions and techniques in ruby programming, third edition
Addison-Wesley Professional ©2014
ISBN:0-321-71463-6
MATERIALI FORNITI ALLO STUDENTE:
lucidi del corso;
dati di esempio (in formato .csv) per eseguire gli esercizi proposti a lezione;
codice delle procedure esposte a lezione.
Bibliografia
Modalità d'esame
La modalità di esame è orientata alla verifica dell’autonomia e delle capacità da parte dello studente nell’applicare
i concetti appresti alle lezione per sviluppare sistemi di supporto alle decisioni nelle loro principali declinazioni.
L'esame prevede un colloquio orale sulla realizzazione due progetti assegnati durante le lezioni,
uno per ognuno dei due macro-argomenti trattati nel corso:
1) Data Mining;
2) Analisi OLAP.
I progetti sono da svolgere in modalità individuale o in gruppo il colloquio, l'orale verte esclusivamente
sulla realizzazione dei due progetti. Una condizione necessaria ma non sufficiente al superamento
dell'esame consiste nelle realizzazione dei due progetti nella loro interezza.
In particolare i progetti verranno valutati fino a un massimo di 15 punti ognuno e il voto finale sarà rappresentato
dalla somma delle due valutazioni.
L'esame non cambia da studenti frequentanti a non frequentanti.
Tipologia di Attività formativa D e F
Le attività formative in ambito D o F comprendono gli insegnamenti impartiti presso l'Università di Verona o periodi di stage/tirocinio professionale.
Nella scelta delle attività di tipo D, gli studenti dovranno tener presente che in sede di approvazione si terrà conto della coerenza delle loro scelte con il progetto formativo del loro piano di studio e dell'adeguatezza delle motivazioni eventualmente fornite.
anni | Insegnamenti | TAF | Docente |
---|---|---|---|
1° 2° | Linguaggio Programmazione Matlab-Simulink | D |
Bogdan Mihai Maris
(Coordinatore)
|
anni | Insegnamenti | TAF | Docente |
---|---|---|---|
1° 2° | Introduzione alla stampa 3D | D |
Franco Fummi
(Coordinatore)
|
1° 2° | Linguaggio programmazione Python | D |
Vittoria Cozza
(Coordinatore)
|
1° 2° | Progettazione di componenti hardware su FPGA | D |
Franco Fummi
(Coordinatore)
|
1° 2° | Prototipizzazione con Arduino | D |
Franco Fummi
(Coordinatore)
|
1° 2° | Tutela dei beni immateriali (SW e invenzione) tra diritto industriale e diritto d’autore | D |
Roberto Giacobazzi
(Coordinatore)
|
anni | Insegnamenti | TAF | Docente |
---|---|---|---|
1° 2° | Lab.: The fashion lab (1 cfu) | D |
Maria Caterina Baruffi
(Coordinatore)
|
1° 2° | Minicorso Blockchain | D |
Nicola Fausto Spoto
(Coordinatore)
|
Prospettive
Avvisi degli insegnamenti e del corso di studio
Per la comunità studentesca
Se sei già iscritta/o a un corso di studio, puoi consultare tutti gli avvisi relativi al tuo corso di studi nella tua area riservata MyUnivr.
In questo portale potrai visualizzare informazioni, risorse e servizi utili che riguardano la tua carriera universitaria (libretto online, gestione della carriera Esse3, corsi e-learning, email istituzionale, modulistica di segreteria, procedure amministrative, ecc.).
Entra in MyUnivr con le tue credenziali GIA: solo così potrai ricevere notifica di tutti gli avvisi dei tuoi docenti e della tua segreteria via mail e anche tramite l'app Univr.
Docenti tutor
Prova Finale
Scadenziari e adempimenti amministrativi
Per gli scadenziari, gli adempimenti amministrativi e gli avvisi sulle sessioni di laurea, si rimanda al servizio Sessioni di laurea - Scienze e Ingegneria.
Necessità di attivare un tirocinio per tesi
Per stage finalizzati alla stesura della tesi di laurea, non è sempre necessaria l'attivazione di un tirocinio tramite l'Ufficio Stage. Per maggiori informazioni, consultare il documento dedicato, che si trova nella sezione "Documenti" del servizio dedicato agli stage e ai tirocini.
Regolamento della prova finale
Alla tesi di laurea sono dedicati 24 CFU, per un lavoro che non deve superare i 4-5 mesi a tempo pieno per la/o studentessa/studente.
La tesi di laurea sarà compilata e discussa in lingua inglese, anche mediante l'ausilio di supporti multimediali quali slide, filmati, immagini e suoni.
Scopo della Tesi di Laurea
Scopo della tesi è quello di sviluppare uno studio originale che può culminare con un progetto applicativo o un risultato teorico connesso a specifici problemi di natura progettuale o una rassegna critica sullo stato dell'arte in un determinato ambito di studio. Nel corso dello svolgimento della Tesi il laureando dovrà, sotto la guida del relatore ed eventuali correlatori, affrontare lo studio e l'approfondimento degli argomenti scelti, ma anche acquisire capacità di sintesi e applicazione creativa delle conoscenze acquisite. Il contenuto della Tesi deve essere inerente a tematiche della bioinformatica e della informatica medica o discipline strettamente correlate. La Tesi consiste nella presentazione in forma scritta di attività che possono essere articolate come: -progettazione e sviluppo di applicazioni o sistemi; -analisi critica di contributi tratti dalla letteratura scientifica; -contributi originali di ricerca.
La Tesi può essere redatta sia in lingua inglese che in lingua italiana, e può essere discussa sia in inglese che in italiano, anche mediante l'ausilio di supporti multimediali quali slide, filmati, immagini e suoni. Nel caso di tesi redatta in lingua italiana alla medesima dovrà essere aggiunto un breve riassunto in lingua inglese.
Modalità di svolgimento e valutazione.
La prova finale consiste nello sviluppo di una tesi di laurea, che impegni lo studente in un lavoro di ricerca, formalizzazione, progettazione o sviluppo: tale lavoro contribuirà sostanzialmente al completamento della sua formazione tecnico-scientifica. Ogni tesi di Laurea può essere interna o esterna, a seconda che sia svolta presso l'Università di Verona o in collaborazione con un altro Ente. Ogni tesi prevede un relatore, eventualmente affiancato da uno o più correlatori, e un controrelatore. Il controrelatore è nominato dal Collegio Didattico almeno 20 gg prima della discussione della Tesi, verificata l'ammissibilità dello studente a sostenere l'esame di Laurea Magistrale. Per quanto riguarda gli aspetti giuridici (ad esempio, proprietà intellettuale dei risultati) legati alla Tesi e ai risultati ivi contenuti, si rimanda alla legislazione vigente in materia ed ai Regolamenti di Ateneo.
Valutazione delle Tesi
I criteri su cui sono chiamati ad esprimersi relatore ed eventuali correlatori e controrelatore sono i seguenti:
1. livello di approfondimento del lavoro svolto, in relazione allo stato dell'arte dei settori disciplinari di pertinenza informatica, con enfasi sulle applicazioni agli ambiti medici e biologici;
2. avanzamento conoscitivo o tecnologico apportato dalla Tesi;
3. impegno critico espresso dalla/dal laureanda/o;
4. impegno sperimentale e/o di sviluppo formale espresso dal laureando;
5. autonomia di lavoro espressa dalla/dal laureanda/o;
6. significatività delle metodologie impiegate;
7. accuratezza dello svolgimento e della scrittura;
La/il controrelatrice/controrelatore non è chiamata/o ad esprimersi sul punto 5.
Voto di Laurea.
Il voto di Laurea (espresso in 110mi) è un valore intero compreso tra 66/110 e 110/110 e viene formato dalla somma, arrotondata al numero intero più vicino (e.g., 93.50 diventa 94, 86.49 diventa 86), dei seguenti addendi:
1) media pesata sui crediti e rapportata a 110 dei voti conseguiti negli esami di profitto;
2) valutazione del colloquio di Laurea e della Tesi secondo le seguenti modalità:
a) attribuzione di un coefficiente compreso tra 0 e 1 (frazionario con una cifra decimale) per ciascuno dei punti 1-7 elencati sopra;
b) attribuzione di un coefficiente compreso tra 0 e 1 (frazionario con una cifra decimale) per la qualità della presentazione;
c) somma dei coefficienti attribuiti ai punti a e b.
La presenza di eventuali lodi ottenute negli esami sostenuti, la partecipazione a stage ufficialmente riconosciuti dal Collegio Didattico di Informatica, il superamento di esami in soprannumero ed il raggiungimento della Laurea in tempi contenuti rispetto alla durata legale del corso degli studi possono essere utilizzati dalla Commissione di Laurea per attribuire un ulteriore incremento di un punto. Qualora la somma ottenuta raggiunga 110/110, la Commissione può decidere l'attribuzione della lode. La lode viene
proposta e discussa dalla Commissioni, senza l'adozione di particolari meccanismi di calcolo automatico. In base alle norme vigenti, la lode viene attribuita solo se il parere è unanime
Tesi esterne
Una Tesi esterna viene svolta in collaborazione con un ente diverso dall'Università di Verona. In tal caso, il laureando dovrà preventivamente concordare il tema della Tesi con un relatore dell'Ateneo. Inoltre, è previsto almeno un correlatore appartenente all'ente esterno, quale riferimento immediato per lo studente nel corso dello svolgimento dell’attività di Tesi. Relatore e correlatori devono essere indicati nella domanda di assegnazione Tesi. Le modalità assicurative della permanenza dello studente presso l'Ente esterno sono regolate dalle norme vigenti presso l'Università di Verona. Se la Tesi si configura come un periodo di formazione presso tale ente, allora è necessario stipulare una convenzione tra l'Università e detto ente. I risultati contenuti nella Tesi sono patrimonio in comunione di tutte le persone ed enti coinvolti. In particolare, i contenuti ed i risultati della Tesi sono da considerarsi pubblici. Per tutto quanto riguarda aspetti non strettamente scientifici (e.g. convenzioni, assicurazioni) ci si rifà alla delibera del Senato Accademico del 12 gennaio 1999.
Relatore, correlatori, controrelatori. La Tesi di Laurea viene presentata da un relatore. Relatore può essere un docente di ruolo del corso di Laurea Magistrale in Medical Bioinformatics o del Dipartimento di Informatica o inquadrato nei SSD ING/INF/05 e INF/01 dell’Ateneo. Oltre a coloro che hanno i requisiti indicati rispetto al ruolo di relatore (come indicato sopra), possono svolgere il ruolo di correlatori anche ricercatori operanti in istituti di ricerca extra-universitari assegnisti di ricerca, titolari di borsa di studio post-dottorato, dottorandi di ricerca, personale tecnico del Dipartimento, cultori della materia nominati da un Ateneo italiano ed ancora in vigore, referenti aziendali esperti nel settore considerato nella Tesi. Controrelatore può essere nominato qualunque docente dei settori scientifico-disciplinari presenti nell’offerta didattica della laurea magistrale in Medical Bioinformatics e in servizio presso l'Università degli Studi di Verona, che risulti particolarmente competente nell'ambito specifico di studio della Tesi.
Gestione carriere
Area riservata studenti
Erasmus+ e altre esperienze all’estero
Modalità e sedi di frequenza
Come riportato nel Regolamento Didattico, la frequenza al corso di studio non è obbligatoria.
È consentita l'iscrizione a tempo parziale. Per saperne di più consulta la pagina Possibilità di iscrizione Part time.
Le attività didattiche del corso di studi si svolgono negli spazi dell’area di Scienze e Ingegneria che è composta dagli edifici di Ca’ Vignal 1, Ca’ Vignal 2, Ca’ Vignal 3 e Piramide, siti nel polo di Borgo Roma.
Le lezioni frontali si tengono nelle aule di Ca’ Vignal 1, Ca’ Vignal 2, Ca’ Vignal 3 mentre le esercitazioni pratiche nei laboratori didattici dedicati alle varie attività.
Caratteristiche dei laboratori didattici a disposizione degli studenti
- Laboratorio Alfa
- 50 PC disposti in 13 file di tavoli
- 1 PC per docente collegato a un videoproiettore 8K Ultra Alta Definizione per le esercitazioni
- Configurazione PC: Intel Core i3-7100, 8GB RAM, 250GB SSD, monitor 24", Linux Ubuntu 22.04
- Tutti i PC sono accessibili da persone in sedia a rotelle
- Laboratorio Delta
- 120 PC in 15 file di tavoli
- 1 PC per docente collegato a due videoproiettori 4K per le esercitazioni
- Configurazione PC: Intel Core i3-7100, 8GB RAM, 250GB SSD, monitor 24", Linux Ubuntu 22.04
- Un PC è su un tavolo ad altezza variabile per garantire un accesso semplificato a persone in sedia a rotelle
- Laboratorio Gamma (Cyberfisico)
- 19 PC in 3 file di tavoli
- 1 PC per docente con videoproiettore 4K
- Configurazione PC: Intel Core i7-13700, 16GB RAM, 512GB SSD, monitor 24", Linux Ubuntu 22.04
- Laboratorio VirtualLab
- Accessibile via web: https://virtualab.univr.it
- Emula i PC dei laboratori Alfa/Delta/Gamma
- Usabile dalla rete universitaria o tramite VPN dall'esterno
- Permette agli studenti di lavorare da remoto (es. biblioteca, casa) con le stesse funzionalità dei PC di laboratorio
Caratteristiche comuni:
- Tutti i PC hanno la stessa suite di programmi usati negli insegnamenti di laboratorio
- Ogni studente ha uno spazio disco personale di XXX GB, accessibile da qualsiasi PC
- Gli studenti quindi possono usare qualsiasi PC in qualsiasi laboratorio senza limitazioni ritrovando sempre i documenti salvati precedentemente
Questa organizzazione dei laboratori offre flessibilità e continuità nel lavoro degli studenti, consentendo l'accesso ai propri documenti e all'ambiente di lavoro da qualsiasi postazione o da remoto.