Studiare

In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.

A.A. 2007/2008

Calendario accademico

Il calendario accademico riporta le scadenze, gli adempimenti e i periodi rilevanti per la componente studentesca, personale docente e personale dell'Università. Sono inoltre indicate le festività e le chiusure ufficiali dell'Ateneo.
L’anno accademico inizia il 1° ottobre e termina il 30 settembre dell'anno successivo.

Calendario accademico

Calendario didattico

Il calendario didattico indica i periodi di svolgimento delle attività formative, di sessioni d'esami, di laurea e di chiusura per le festività.

Anno accademico:
Definizione dei periodi di lezione
Periodo Dal Al
1° Q 3-ott-2007 4-dic-2007
2° Q 10-gen-2008 12-mar-2008
3° Q 7-apr-2008 13-giu-2008
Sessioni degli esami
Sessione Dal Al
I Sessione esami 10-dic-2007 9-gen-2008
II Sessione esami 17-mar-2008 4-apr-2008
Sessione estiva 23-giu-2008 31-lug-2008
Sessione autunnale 1-set-2008 26-set-2008
Sessioni di lauree
Sessione Dal Al
Sessione straordinaria 12-dic-2007 12-dic-2007
Sessione invernale 13-mar-2008 13-mar-2008
Sessione estiva 15-lug-2008 15-lug-2008
Sessione autunnale 3-ott-2008 3-ott-2008
Vacanze
Periodo Dal Al
Festa di Ognissanti 1-nov-2007 1-nov-2007
Festa dell'Immacolata Concezione 8-dic-2007 8-dic-2007
Vacanze di Natale 21-dic-2007 6-gen-2008
Vacanze di Pasqua 21-mar-2008 25-mar-2008
Festa della Liberazione 25-apr-2008 25-apr-2008
Festa del Lavoro 1-mag-2008 1-mag-2008
Festa del Santo Patrono 21-mag-2008 21-mag-2008
Festa della Repubblica 2-giu-2008 2-giu-2008
Vacaze estive 31-lug-2008 31-ago-2008

Calendario esami

Gli appelli d'esame sono gestiti dalla Unità Operativa Didattica e Studenti Scienze e Ingegneria.
Per consultazione e iscrizione agli appelli d'esame visita il sistema ESSE3.
Per problemi inerenti allo smarrimento della password di accesso ai servizi on-line si prega di rivolgersi al supporto informatico della Scuola o al servizio recupero credenziali

Calendario esami

Per dubbi o domande leggi le risposte alle domande più frequenti F.A.Q. Iscrizione Esami

Docenti

A B C D F G M P S V

Acquaviva Andrea

andrea.acquaviva@univr.it +39 045 802 7059

Bellin Gianluigi

gianluigi.bellin@univr.it +39 045 802 7969

Bonacina Maria Paola

mariapaola.bonacina@univr.it +39 045 802 7046

Combi Carlo

carlo.combi@univr.it 045 802 7985

Cristani Matteo

matteo.cristani@univr.it 045 802 7983

Di Pierro Alessandra

alessandra.dipierro@univr.it +39 045 802 7971

Fummi Franco

franco.fummi@univr.it 045 802 7994

Giacobazzi Roberto

roberto.giacobazzi@univr.it +39 045 802 7995

Gregorio Enrico

Enrico.Gregorio@univr.it 045 802 7937

Manca Vincenzo

vincenzo.manca@univr.it 045 802 7981

Masini Andrea

andrea.masini@univr.it 045 802 7922

Mastroeni Isabella

isabella.mastroeni@univr.it +39 045 802 7089

Merro Massimo

massimo.merro@univr.it 045 802 7992

Monti Francesca

francesca.monti@univr.it 045 802 7910

Morato Laura Maria

laura.morato@univr.it 045 802 7904

Posenato Roberto

roberto.posenato@univr.it +39 045 802 7967

Pravadelli Graziano

graziano.pravadelli@univr.it +39 045 802 7081

Segala Roberto

roberto.segala@univr.it 045 802 7997

Solitro Ugo

ugo.solitro@univr.it +39 045 802 7977
Marco Squassina,  5 gennaio 2014

Squassina Marco

marco.squassina@univr.it +39 045 802 7913

Vigano' Luca

luca.vigano@univr.it

Villa Tiziano

tiziano.villa@univr.it +39 045 802 7034

Piano Didattico

Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.

InsegnamentiCreditiTAFSSD
5
A
(INF/01)
InsegnamentiCreditiTAFSSD
InsegnamentiCreditiTAFSSD
InsegnamentiCreditiTAFSSD

1° Anno

InsegnamentiCreditiTAFSSD
5
A
(INF/01)

2° Anno

InsegnamentiCreditiTAFSSD

3° Anno

InsegnamentiCreditiTAFSSD

4° Anno

InsegnamentiCreditiTAFSSD
Insegnamenti Crediti TAF SSD
Tra gli anni: 4°- 5°Tre insegnamenti a scelta tra i seguenti
5
S
(MAT/02)

Legenda | Tipo Attività Formativa (TAF)

TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.




SStage e tirocini presso imprese, enti pubblici o privati, ordini professionali

Codice insegnamento

4S01076

Crediti

5

Settore Scientifico Disciplinare (SSD)

INF/01 - INFORMATICA

Lingua di erogazione

Italiano

Periodo

3° Q dal 7-apr-2008 al 13-giu-2008.

Obiettivi formativi

Acquisire un'adeguata conoscenza dei principali paradigmi avanzati di algoritmi per problemi di ottimizzazione combinatorica con particolare attenzione per i paradigmi che permettono di determinare soluzione approssimante per problemi di ottimizzazione combinatoria NP-difficili.

Programma

Richiamo dei principali concetti inerenti ai problemi computazionali: descrizione, istanze, codifica, modelli precisi e modelli approssimati. Problemi computazioni di ottimizzazione. Esempi di problemi computazionali.

Richiamo dei principali concetti inerenti agli algoritmi: risorse computazionali, codifica dell'input, dimensione dell'input, definizione di tempo computazionale. Analisi caso peggiore e caso medio. Tempo di calcolo e ordini di grandezza: possibili insidie.

Tempi di calcolo e miglioramenti hardware: relazioni principali. Algoritmi efficienti e problemi trattabili.

Paradigma divide et impera
--------------------------
Richiamo struttura. Analisi complessità. Esempi di applicazione: prodotto tra due numeri, Prodotto fra due matrici.
Schema divide et impera per il prodotto di due polinomi: trasformata veloce di Fourier (FFT).
Introduzione al problema della mediana e, generalizzazione, al problema della selezione. Risoluzione del problema della selezione.

Paradigma greedy
----------------
Richiamo struttura. Esempio di applicazione per il problema dell'albero minimo di ricoprimento. Richiamo sulla struttura dati per insiemi disgiunti. Esempio di applicazione per il problema dei cammini minimi da sorgente singola (algoritmo di Dijkstra).
Introduzione ai matroidi: definizione, proprietà fondamentali. Problema del Massimo di un matroide pesato. Dimostrazione che la tecnica greedy determina sempre la soluzione ottima per il problema del Massimo di un matroide pesato.
Valutazione due soluzioni all'esercizio di ricerca elemento in una matrice ordinata.
Uso dei matroidi per la risoluzione del problema di programmazione di task unitari su singolo processore. Limiti della rappresentazione con i matroidi. Esempi di problemi risolvibili con tecnica greedy che non sono rappresentabili da matrodidi.

Tecnica backtracking
--------------------
Introduzione. Schema generale. Aspetti cruciali.
Applicazione della tecnica al problema dello zaino con ripetizione. Analisi correttezza e complessità.
Introduzione uso della tecnica al problema dell'inviluppo convesso: algoritmo di Graham. Uso della tecnica backtracking al problema del string matching: algoritmo di Knuth, Morris & Pratt.

Tecnica branch & bound
----------------------
Introduzione. Schema generale. Aspetti cruciali.
Scelta ordine di visita dei figli: strategia hill climbing. Tecnica come nuova tecnica ricerca in un albero: strategia best-first.
Applicazione della tecnica al problema dell'assegnamento e al problema dello zaino.
Applicazione della tecnica al problema del commesso viaggiatore come esempio di funzione lower bound non banale.

Paradigma programmazione dinamica
---------------------------------
Introduzione. Schema generale. Aspetti cruciali. Applicazione della tecnica al problema della massima sottosequenza crescente. Applicazione della tecnica al problema del string matching approssimato e al problema dello zaino.
Analisi di esempi di applicazione. Pattern ricorrenti per la determinazione di sottoproblemi.
Tecnica memoization (annotazione)
Introduzione e analisi vantaggi svantaggi.

Tecnica ricerca locale
----------------------
Introduzione e studio caso applicazione al problema dell'albero minimo di ricoprimento. Risoluzione del problema dell'ordinamento mediante tecnica di ricerca locale: ordinamento per inserimento e ShellSort.
Tecniche avanzate di ricerca locale: Simulated annealing e Tabù search.

Algoritmi probabilistici
------------------------
Definizione. Algoritmi probabilistici numerici, algoritmi di Monte Carlo e algoritmi di Las Vegas. Esempi di problemi risolti con tali algoritmi: Buffon's needle, Pattern Matching e Universal hashing.

Algoritmi di approssimazione
----------------------------
Classi NPO e PO. Errore relatio e indice di performance. Algorimo r-approssimante. Problema r-approssimabile.
Studio dell'approssimabilità del problema Min Vertex Cover: dall'algoritmo greedy all'algoritmo pseudo-casuale.

Algoritmi per problemi temporali vincolati
-------------------------------------------
Introduzione ai concetti di problemi con vincoli e vincoli temporali.
Algoritmi per la risoluzione di problemi con vincoli temporali semplici (algoritmi polinomiali) o composti (tecnica di backtracking con ottimizzazioni locali).

Bibliografia

Testi di riferimento
Autore Titolo Casa editrice Anno ISBN Note
Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani Algorithms (Edizione 1) McGraw-Hill Higher Education 2007 978-0-07-352340-8
Alan Bertossi Algoritmi e strutture dati (Edizione 1) UTET 2000 88-7750-611-3
G. Brassard, P. Bratley Fundamentals of Algorithms Prentice-Hall 1996 0133350681
R. C. T. Lee, S. S. Tseng, R. C. Chang, Y. T. Tsai Introduction to the Design and Analysis of Algorithms (Edizione 1) McGraw-Hill Education 2005 007-124346-1
T. Cormen, C. Leiserson, R. Rivest, C. Stein Introduzione agli Algoritmi e Strutture Dati (Edizione 2) McGraw-Hill 2005 88-386-6251-7

Modalità d'esame

L'esame consiste in una prova scritta e una orale.

Nella prova scritta il candidato dovrà risolvere degli esercizi in ordine crescente di difficoltà. Gli esercizi hanno lo scopo di verificare la preparazione dello studente sui concetti fondamentali e la loro applicazione. Non viene MAI richiesto di conoscere a memoria dettagli di dimostrazioni, ma di conoscere i teoremi, la loro dimostrazione nei punti fondamentali e di saperli applicare. Solitamente gli esercizi sono quattro a difficoltà crescente. I primi due esercizi valgono al massimo 7 punti ciascuno mentre gli ultimi due 8. La prova è superata se per ciascuno dei primi due esercizi si ottengono almeno 4 punti E si raggiunge il punteggio finale di 18. La prova ha una durata di un'ora e mezza.

La prova orale consiste in un colloquio dove viene richiesto di 'ragionare' su almeno due argomenti (a scelta del docente) del programma del corso. Il colloquio ha lo scopo di verificare la capacità dello studente di presentare gli argomenti e i principali risultati. Per quanto riguarda le dimostrazioni dei teoremi, lo studente è tenuto a conoscere le dimostrazioni principali fatte durante il corso (segnalate dal docente e sul programma).

Materiale Didattico

Tipologia di Attività formativa D e F

Anno accademico:

Insegnamenti non ancora inseriti

Prospettive


Avvisi degli insegnamenti e del corso di studio

Per la comunità studentesca

Se sei già iscritta/o a un corso di studio, puoi consultare tutti gli avvisi relativi al tuo corso di studi nella tua area riservata MyUnivr.
In questo portale potrai visualizzare informazioni, risorse e servizi utili che riguardano la tua carriera universitaria (libretto online, gestione della carriera Esse3, corsi e-learning, email istituzionale, modulistica di segreteria, procedure amministrative, ecc.).
Entra in MyUnivr con le tue credenziali GIA.

Ulteriori servizi

I servizi e le attività di orientamento sono pensati per fornire alle future matricole gli strumenti e le informazioni che consentano loro di compiere una scelta consapevole del corso di studi universitario.