Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Type D and Type F activities

This information is intended exclusively for students already enrolled in this course.
If you are a new student interested in enrolling, you can find information about the course of study on the course page:

Laurea magistrale in Economics and data analysis - Enrollment from 2025/2026

Nei piani didattici di ciascun Corso di studio è previsto l’obbligo di conseguire un certo numero di crediti formativi mediante attività a scelta (chiamate anche "di tipologia D e F").

Oltre che in insegnamenti previsti nei piani didattici di altri corsi di studio e in certificazioni linguistiche o informatiche secondo quanto specificato nei regolamenti di ciascun corso, tali attività possono consistere anche in iniziative extracurriculari di contenuto vario, quali ad esempio la partecipazione a un seminario o a un ciclo di seminari, la frequenza di laboratori didattici, lo svolgimento di project work, stage aggiuntivo, eccetera.

Come per ogni altra attività a scelta, è necessario che anche queste non costituiscano un duplicato di conoscenze e competenze già acquisite dallo studente.

Quelle elencate in questa pagina sono le iniziative extracurriculari che sono state approvate dalla Commissione didattica e quindi consentono a chi vi partecipa l'acquisizione dei CFU specificati, alle condizioni riportate nelle pagine di dettaglio di ciascuna iniziativa.

Si ricorda in proposito che:
- tutte queste iniziative richiedono, per l'acquisizione dei relativi CFU, il superamento di una prova di verifica delle competenze acquisite, secondo le indicazioni contenute nella sezione "Modalità d'esame" della singola attività;
- lo studente è tenuto a inserire nel proprio piano degli studi l'attività prescelta e a iscriversi all'appello appositamente creato per la verbalizzazione, la cui data viene stabilita dal docente di riferimento e pubblicata nella sezione "Modalità d'esame" della singola attività.
 

COMPETENZE TRASVERSALI

 

Scopri i percorsi formativi promossi dal  Teaching and learning centre dell'Ateneo, destinati agli studenti iscritti ai corsi di laurea, volti alla promozione delle competenze trasversali: https://talc.univr.it/it/competenze-trasversali

 

CONTAMINATION LAB

Il Contamination Lab Verona (CLab Verona) è un percorso esperienziale con moduli dedicati all'innovazione e alla cultura d'impresa che offre la possibilità di lavorare in team con studenti e studentesse di tutti i corsi di studio per risolvere sfide lanciate da aziende ed enti. Il percorso permette di ricevere 6 CFU in ambito D o F. Scopri le sfide: https://www.univr.it/clabverona

 

ATTENZIONE: Per essere ammessi a sostenere una qualsiasi attività didattica, incluse quelle a scelta, è necessario essere iscritti all'anno di corso in cui essa viene offerta. Si raccomanda, pertanto, ai laureandi delle sessioni di dicembre e aprile di NON svolgere attività extracurriculari del nuovo anno accademico, cui loro non risultano iscritti, essendo tali sessioni di laurea con validità riferita all'anno accademico precedente. Quindi, per attività svolte in un anno accademico cui non si è iscritti, non si potrà dar luogo a riconoscimento di CFU.

Academic year:
Primo semestre (lauree) From 9/25/23 To 1/19/24
years Modules TAF Teacher
1° 2° Thematic cycle of conferences on Women's "leadership": data, reflections and experiences D Martina Menon (Coordinator)
1° 2° Educational laboratory on credit securitization D Michele De Mari (Coordinator)
Periodo generico From 10/1/23 To 5/31/24
years Modules TAF Teacher
1° 2° Data Analysis Laboratory with R (Verona) D Marco Minozzo (Coordinator)
1° 2° Data Visualization Laboratory D Marco Minozzo (Coordinator)
1° 2° Python Laboratory D Marco Minozzo (Coordinator)
1° 2° Data Science Laboratory with SAP D Marco Minozzo (Coordinator)
1° 2° Advanced Excel Laboratory (Verona) D Marco Minozzo (Coordinator)
1° 2° Excel Laboratory (Verona) D Marco Minozzo (Coordinator)
1° 2° Laboratory on research methods for business D Cristina Florio (Coordinator)
1° 2° Laboratory on research methods for business D Cristina Florio (Coordinator)
1° 2° Plan your future D Paolo Roffia (Coordinator)
1° 2° Plan your future D Paolo Roffia (Coordinator)
1° 2° Programming in Matlab D Marco Minozzo (Coordinator)
1° 2° Programming in SAS D Marco Minozzo (Coordinator)
Primo semestre (lauree magistrali) From 10/2/23 To 12/22/23
years Modules TAF Teacher
1° 2° Elements of financial risk management 2023/2024 D Claudio Zoli (Coordinator)
1° 2° English for business and economics F Claudio Zoli (Coordinator)
1° 2° Introduction to business plan D Paolo Roffia (Coordinator)
1° 2° Introduction to Java programming D Alessandro Gnoatto (Coordinator)
1° 2° Topics in applied economics and finance - 2023/2024 D Claudio Zoli (Coordinator)
Secondo semestre (lauree magistrali) From 2/26/24 To 5/24/24
years Modules TAF Teacher
1° 2° Data discovery for business decisions D Claudio Zoli (Coordinator)
1° 2° Digital experiments in economics - 2023/2024 D Claudio Zoli (Coordinator)
1° 2° The accountant as a business consultant D Riccardo Stacchezzini (Coordinator)
1° 2° Key markets / business approach & business negotiations - 2023/2024 D Angelo Zago (Coordinator)
1° 2° Professional communication for economics – 2023/2024 D Claudio Zoli (Coordinator)
1° 2° The why, the what and the how of structural equation modelling D Cristina Florio (Coordinator)
1° 2° Topics in economics and ethics of artificial intelligence- 2023/2024 D Claudio Zoli (Coordinator)

Teaching code

4S02464

Credits

9

Language

English en

Scientific Disciplinary Sector (SSD)

SECS-P/05 - ECONOMETRICS

Period

Secondo semestre (lauree magistrali) dal Feb 26, 2024 al May 24, 2024.

Courses Single

Authorized

Learning objectives

The course provides an overview of the main econometric tools, with particular emphasis on economic applications, developed interactively using the R package. The program covers standard econometric models (OLS regression and its diagnostics) as well as more advanced models for the analysis of cross-sectional (IV, probit, tobit), time series (autoregressive) and panel data (random and fixed effects). Particular attention will be given to the intuition behind each topic, in addition to more formal issues.
Part of the evaluation is based on the delivery of an assignment, whose aim is applying on concrete cases the tools learnt in class and stimulating discussion among students. At the end of the course, students should be able to: i) read and critically interpret empirical works developed by other researchers, ii) manage small and large datasets in order to extract useful information, and iii) design and implement on their own empirical analyses based on real data.

Prerequisites and basic notions

Working knowledge of basic mathematics and statistics is recommended.

Program

1. INTRODUCTION
1a. What is Econometrics?
Definition; cross-section, time series and panel data.
1b. R tutorial
Data management; basic statistics; graphics.
2. ORDINARY LEAST SQUARES (OLS) ESTIMATOR
2a. Introduction
Univariate and multivariate regression; marginal effects and elasticity; R-squared and adjusted R-squared; outliers.
2b. Properties
Gauss-Markov assumptions; unbiasedness; efficiency; consistency; asymptotic normality.
2c. Testing
t-test on one restriction; F test on several restrictions.
3. OLS DIAGNOSTICS
3a. Specification
Collinearity; superfluous and omitted variables; RESET test of specification; Chow test of structural stability.
3b. Heteroskedasticity
White test and Breusch-Pagan test; White robust standard errors.
3c. Time series
Stationarity; AR processes; Durbin-Watson and Breusch-Godfrey tests; Newey-West robust standard errors.
4. INSTRUMENTAL VARIABILE (IV) ESTIMATOR
4a. Estimator
Assumptions; Simple instrumental variable (SIV) and generalized instrumental variable (GIV); properties; two-stage derivation (2SLS).
4b. Instrument selection
Relevance test; weak instruments; Sargan validity test; Hausman exogeneity test.
5. LIMITED DEPENDENT VARIABLE (LDV)
5a. Binary dependent variable
Linear probability model (LPM); probit and logit models; marginal effects; maximum likelihood estimate; goodness of fit; hypothesis testing.
5b. Truncated and censored data
Truncated regression; tobit-I model; tobit-II and heckman models; marginal effects; goodness of fit.
6. PANEL DATA
6a. Models
Difference-in-difference; Pooled effects, fixed effects and random effects.
6b. Testing
Goodness of fit; comparison tests; attrition.

Bibliography

Visualizza la bibliografia con Leganto, strumento che il Sistema Bibliotecario mette a disposizione per recuperare i testi in programma d'esame in modo semplice e innovativo.

Didactic methods

Frontal teaching. Lectures include real examples interactively developed using the data management free software R.

Learning assessment procedures

The exam is made of one written essay and one individual homework. No oral integration is planned.
The written essay lasts one hour and thirty minutes and covers the whole program of the course. Use of handheld calculators is allowed, but use of personal notes or other teaching material is not allowed.
The homework is developed individually, and can be of two types (Homework I or Homework II). Homework I aims to develop analytical skills through personal data analysis. Homework II aims to develop critical skills with respect to empirical applications. Each student can choose which type of homework to deliver, but must deliver one of them. Once the deadline for delivery of Homework I has expired, it is possible to deliver Homework II only. The homework has to be delivered before taking part in the written essay; its grade remains valid throughout the academic year.

Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE

Evaluation criteria

The written essay evaluates general understanding of the main econometric topics and the ability to understand and interpret tables reporting econometric output. The homeworks ascertain the ability to develop empirical research through personal elaboration (Homework I) or to critically comment empirical research developed by others (Homework II).

Criteria for the composition of the final grade

The final grade is given by the average of the grades in the essay and the homework, with 80% and 20% weights respectively. In order to pass the exam, it is necessary to obtain a grade not below 18/30 in the written essay. Students can separately reject the essay grade and the homework grade. However, the homework grade can be rejected only once.

Exam language

Inglese