Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Type D and Type F activities
Le attività formative di tipologia D sono a scelta dello studente, quelle di tipologia F sono ulteriori conoscenze utili all’inserimento nel mondo del lavoro (tirocini, competenze trasversali, project works, ecc.). In base al Regolamento Didattico del Corso, alcune attività possono essere scelte e inserite autonomamente a libretto, altre devono essere approvate da apposita commissione per verificarne la coerenza con il piano di studio. Le attività formative di tipologia D o F possono essere ricoperte dalle seguenti attività.
1. Insegnamenti impartiti presso l'Università di Verona
Comprendono gli insegnamenti sotto riportati e/o nel Catalogo degli insegnamenti (che può essere filtrato anche per lingua di erogazione tramite la Ricerca avanzata).
Modalità di inserimento a libretto: se l'insegnamento è compreso tra quelli sottoelencati, lo studente può inserirlo autonomamente durante il periodo in cui il piano di studi è aperto; in caso contrario, lo studente deve fare richiesta alla Segreteria, inviando a carriere.scienze@ateneo.univr.it il modulo nel periodo indicato.
2. Attestato o equipollenza linguistica CLA
Oltre a quelle richieste dal piano di studi, per gli immatricolati dall'A.A. 2021/2022 vengono riconosciute:
- Lingua inglese: vengono riconosciuti 3 CFU per ogni livello di competenza superiore a quello richiesto dal corso di studio (se non già riconosciuto nel ciclo di studi precedente).
- Altre lingue e italiano per stranieri: vengono riconosciuti 3 CFU per ogni livello di competenza a partire da A2 (se non già riconosciuto nel ciclo di studi precedente).
Tali cfu saranno riconosciuti, fino ad un massimo di 6 cfu complessivi, di tipologia F se il piano didattico lo consente, oppure di tipologia D. Ulteriori crediti a scelta per conoscenze linguistiche potranno essere riconosciuti solo se coerenti con il progetto formativo dello studente e se adeguatamente motivati.
Gli immatricolati fino all'A.A. 2020/2021 devono consultare le informazioni che si trovano qui.
Modalità di inserimento a libretto: richiedere l’attestato o l'equipollenza al CLA e inviarlo alla Segreteria Studenti - Carriere per l’inserimento dell’esame in carriera, tramite mail: carriere.scienze@ateneo.univr.it
3. Competenze trasversali
Scopri i percorsi formativi promossi dal TALC - Teaching and learning center dell'Ateneo, destinati agli studenti regolarmente iscritti all'anno accademico di erogazione del corso https://talc.univr.it/it/competenze-trasversali
Modalità di inserimento a libretto: non è previsto l'inserimento dell'insegnamento nel piano di studi. Solo in seguito all'ottenimento dell'Open Badge verranno automaticamente convalidati i CFU a libretto. La registrazione dei CFU in carriera non è istantanea, ma ci saranno da attendere dei tempi tecnici.
4. Periodo di stage/tirocinio
Oltre ai CFU previsti dal piano di studi (verificare attentamente quanto indicato sul Regolamento Didattico): qui informazioni su come attivare lo stage.
Insegnamenti e altre attività che si possono inserire autonomamente a libretto
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° | Data Analysis for Biomedical Sciences | D |
Gloria Menegaz
(Coordinator)
|
1° 2° | Introduction to Robotics for students of scientific courses. | D |
Paolo Fiorini
(Coordinator)
|
1° 2° | Matlab-Simulink programming | D |
Bogdan Mihai Maris
(Coordinator)
|
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° | Introduction to Robotics for students of scientific courses. | D |
Paolo Fiorini
(Coordinator)
|
1° 2° | Introduction to 3D printing | D |
Franco Fummi
(Coordinator)
|
1° 2° | HW components design on FPGA | D |
Franco Fummi
(Coordinator)
|
1° 2° | Rapid prototyping on Arduino | D |
Franco Fummi
(Coordinator)
|
1° 2° | Protection of intangible assets (SW and invention)between industrial law and copyright | D |
Roberto Giacobazzi
(Coordinator)
|
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° | Python programming language | D |
Giulio Mazzi
(Coordinator)
|
Machine learning & artificial intelligence (2021/2022)
Teaching code
4S009001
Credits
9
Language
English
Scientific Disciplinary Sector (SSD)
ING-INF/05 - INFORMATION PROCESSING SYSTEMS
The teaching is organized as follows:
Teoria
Laboratorio
Learning outcomes
The course aims to provide the theoretical foundations and describe the main methodologies related to Machine Learning and Pattern Recognition and, more generally, to Artificial Intelligence. In particular, the course will deal with the methods of analysis, recognition and automatic classification of data of any type, typically called patterns. These disciplines are at the basis, are used, and often complement many other disciplines and application areas of wide diffusion, such as computational vision, robotics, image processing, data mining, analysis and interpretation of medical and biological data, bioinformatics, biometrics, video surveillance, speech and text recognition, and many others. More precisely, the methodologies that will be introduced in the course are often an integral part of the aforementioned application areas, and constitute their intelligent part with the ultimate goal of understanding (classifying, recognizing, analyzing) the data from the process of interest (whether they are signals, images, strings, categorical, or other types of data). Starting from the type of measured data, the entire analysis pipeline will be considered such as the extraction and selection of characteristics (features); supervised and unsupervised learning methods, parametric and non-parametric analysis techniques, and validation protocols. Finally, the recent deep learning techniques will be analyzed in general, providing basic notions, and addressing open problems with some case studies. In conclusion, the course aims to provide the students with a set of theoretical foundations and algorithmic tools to address the problems that can be encountered in strategic and innovative industrial sectors such as those involving robotics, cyber physical systems, (big) data mining, digital manufacturing, visual inspection of products/production processes, and automation in general.
Program
The course aims at providing the theoretical foundations and main methods related to the analysis of data, not necessarily images, in short, theory and statistical classification methods will be discussed.
These themes are preparatory to the most recent Deep Learning techniques, which will be intoduced in the final part of the course.
Course content
Introduction: what it is, what it is used for, systems, applications
Bayes' decision theory
Estimation of parameters and nonparametric methods
Linear, nonlinear classifiers and discriminant functions
Linear transformations and Fisher method, feature extraction and selection, Principal Component Analysis
Gaussian mixtures and Expectation-Maximization algorithm
Kernel Methods and Support Vector Machines
Hidden Markov Models
Artificial neural networks
Unsupervised classification & clustering
Classifier ensembles
Deep learning fundamentals
Deep learning advanced topics
Examination Methods
Project development, with a technical report and oral presentation.
The projects should be performed with 1 or 2 persons, 3 persons are acceptable only in exceptional cases and for complex topics; in any case they should be agreed with the teacher.
The project presentation will include some questions aimed at assessing the knowledge of the course contents.