Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Type D and Type F activities

The educational activities of type D are chosen by the student, those of type F are further knowledge useful for entering the world of work (internships, soft skills, project works, etc.). According to the Didactic Regulations of the Course, some activities can be chosen and included autonomously in the booklet, others must be approved by a special committee to verify their consistency with the study plan. Type D or F educational activities can be covered by the following activities.

1. Teachings taught at the University of Verona.

Include the teachings listed below and/or in the Course Catalogue (which can also be filtered by language of delivery via Advanced Search).

Booklet entry mode: if the teaching is included among those listed below, the student can include it autonomously during the period in which the study plan is open; otherwise, the student must submit a request to the Secretariat, sending the form to carriere.scienze@ateneo.univr.it during the period indicated.

2. CLA certificate or language equivalency.

In addition to those required by the curriculum, the following are recognized for those matriculated from A.Y. 2021/2022:

  • English language: 3 CFUs are recognized for each level of proficiency above the one required by the course of study (if not already recognized in the previous course of study).
  • Other languages and Italian for foreigners: 3 cfu are recognized for each proficiency level starting from A2 (if not already recognized in the previous study cycle).

These cfu will be recognized, up to a maximum of 6 cfu in total, as type F if the teaching plan allows, or as type D. Additional elective credits for language knowledge may be recognized only if consistent with the student's educational project and if adequately justified.

Those enrolled until A.Y. 2020/2021 should consult the information found here.

Booklet entry mode: request the certificate or equivalency to the CLA and send it to the Student Secretariat - Careers for career entry of the exam, via email: carriere.scienze@ateneo.univr.it

3. Soft skills

Discover the training paths promoted by the University's TALC - Teaching and learning center, intended for students regularly enrolled in the academic year of course delivery https://talc.univr.it/it/competenze-trasversali

Booklet entry mode: the teaching is not expected to be included in the curriculum. Only after obtaining the Open Badge, the CFUs in the booklet will be automatically validated. The registration of CFUs in career is not instantaneous, but there will be some technical time to wait.  

4. CONTAMINATION LAB 

The Contamination Lab Verona (CLab Verona) is an experiential course with modules on innovation and enterprise culture that offers the opportunity to work in teams with students from all areas to solve challenges set by companies and organisations.  

Upon completion of a CLab, students will be entitled to receive 6 CFU (D- or F-type credits).  

Find out more:  https://www.univr.it/clabverona 

PLEASE NOTE: In order to be admitted to any teaching activities, including those of your choice, you must be enrolled in the academic year in which the activities in question are offered. Students who are about to graduate in the December and April sessions are therefore advised NOT to undertake extracurricular activities in the new academic year in which they are not enrolled, as these graduation sessions are valid for students enrolled in the previous academic year. Therefore, students who undertake an activity in an academic year in which they are not enrolled will not be granted CFU credits.  

5. Stage/internship period

In addition to the CFUs required by the curriculum (check carefully what is indicated on the Didactic Regulations): here information on how to activate the internship. 

Check in the regulations which activities can be Type D and which can be Type F.

Teachings and other activities that can be entered autonomously in the booklet

Academic year:

Teaching code

4S009007

Coordinator

Andrea Calanca

Credits

6

Language

English en

Scientific Disciplinary Sector (SSD)

ING-INF/05 - INFORMATION PROCESSING SYSTEMS

Period

Semester 1 dal Oct 2, 2023 al Jan 26, 2024.

Courses Single

Authorized

Learning objectives

The course aims to provide the following knowledge: theoretical foundation of physical human-robot interaction (e.g. bilateral teleoperation and force control), with particular attention to the design of control architectures capable of guaranteeing stability even in the presence of uncertainties and communication delays. At the end of the course the student will have to demonstrate that s/he has the following skills to apply the acquired knowledge: analyze the technical characteristics and structural properties of a control system for direct or teleoperated interaction with the environment; derive the mathematical model of the physical robot-environment interaction (direct or teleoperated); design a control architecture to ensure stability, performance and safety; implement the control architecture in simulators (e.g. Matlab/Simulink) and in operating systems tailored to robotic application (e.g. ROS). Student must also have the ability to define the technical specifications for a physical human robot-interaction system a (direct or teleoperated) and the ability to choose the most appropriate way to design the control architecture. Student will have to be able to deal with other engineers (e.g. electronic, automatic, mechanical) to design advanced control architectures for complex physical human-robot interaction systems. Student will have to show ability to continue its studies independently in the context of the design of architectures based on non-linear and adaptive techniques.

Prerequisites and basic notions

Dynamic systems, Robotics

Program

- the problem of physical human-robot interaction, application examples (collaborative/assistive robots, exoskeletons)
- force control, impedance control, admittance control, transparency
- the role of mechanical compliance in force control
- physical interaction via teleoperation
- stability demonstrations using Lyapunov function
- passivity theory
- passivity-based control
- advanced algorithms for physical human-robot interaction
- system identification
- implementation of interaction control algorithms (implementation details and issues)

Didactic methods

Frontal lessons for the theoretical part; Lectures with the active involvement of students for the laboratory part.

Learning assessment procedures

The exam will consist of an oral test on the topics of the course, including the assigned homework.

Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE

Evaluation criteria

To pass the exam, the student must demonstrate that he: - has understood the basic principles of human-robot physical interaction - knows how to apply the knowledge acquired during the course to solve the assigned problems. - be able to present one's work and discuss the design choices.

Criteria for the composition of the final grade

The final grade will be the composition of the grade on the oral exam and homeworks

Exam language

English