Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Type D and Type F activities
Le attività formative di tipologia D sono a scelta dello studente, quelle di tipologia F sono ulteriori conoscenze utili all’inserimento nel mondo del lavoro (tirocini, competenze trasversali, project works, ecc.). In base al Regolamento Didattico del Corso, alcune attività possono essere scelte e inserite autonomamente a libretto, altre devono essere approvate da apposita commissione per verificarne la coerenza con il piano di studio. Le attività formative di tipologia D o F possono essere ricoperte dalle seguenti attività.
1. Insegnamenti impartiti presso l'Università di Verona
Comprendono gli insegnamenti sotto riportati e/o nel Catalogo degli insegnamenti (che può essere filtrato anche per lingua di erogazione tramite la Ricerca avanzata).
Modalità di inserimento a libretto: se l'insegnamento è compreso tra quelli sottoelencati, lo studente può inserirlo autonomamente durante il periodo in cui il piano di studi è aperto; in caso contrario, lo studente deve fare richiesta alla Segreteria, inviando a carriere.scienze@ateneo.univr.it il modulo nel periodo indicato.
2. Attestato o equipollenza linguistica CLA
Oltre a quelle richieste dal piano di studi, per gli immatricolati dall'A.A. 2021/2022 vengono riconosciute:
- Lingua inglese: vengono riconosciuti 3 CFU per ogni livello di competenza superiore a quello richiesto dal corso di studio (se non già riconosciuto nel ciclo di studi precedente).
- Altre lingue e italiano per stranieri: vengono riconosciuti 3 CFU per ogni livello di competenza a partire da A2 (se non già riconosciuto nel ciclo di studi precedente).
Tali cfu saranno riconosciuti, fino ad un massimo di 6 cfu complessivi, di tipologia F se il piano didattico lo consente, oppure di tipologia D. Ulteriori crediti a scelta per conoscenze linguistiche potranno essere riconosciuti solo se coerenti con il progetto formativo dello studente e se adeguatamente motivati.
Gli immatricolati fino all'A.A. 2020/2021 devono consultare le informazioni che si trovano qui.
Modalità di inserimento a libretto: richiedere l’attestato o l'equipollenza al CLA e inviarlo alla Segreteria Studenti - Carriere per l’inserimento dell’esame in carriera, tramite mail: carriere.scienze@ateneo.univr.it
3. Competenze trasversali
Scopri i percorsi formativi promossi dal TALC - Teaching and learning center dell'Ateneo, destinati agli studenti regolarmente iscritti all'anno accademico di erogazione del corso https://talc.univr.it/it/competenze-trasversali
Modalità di inserimento a libretto: non è previsto l'inserimento dell'insegnamento nel piano di studi. Solo in seguito all'ottenimento dell'Open Badge verranno automaticamente convalidati i CFU a libretto. La registrazione dei CFU in carriera non è istantanea, ma ci saranno da attendere dei tempi tecnici.
4. Periodo di stage/tirocinio
Oltre ai CFU previsti dal piano di studi (verificare attentamente quanto indicato sul Regolamento Didattico): qui informazioni su come attivare lo stage.
Insegnamenti e altre attività che si possono inserire autonomamente a libretto
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° | Data Analysis for Biomedical Sciences | D |
Gloria Menegaz
(Coordinator)
|
1° 2° | Introduction to Robotics for students of scientific courses. | D |
Paolo Fiorini
(Coordinator)
|
1° 2° | Matlab-Simulink programming | D |
Bogdan Mihai Maris
(Coordinator)
|
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° | Introduction to Robotics for students of scientific courses. | D |
Paolo Fiorini
(Coordinator)
|
1° 2° | Introduction to 3D printing | D |
Franco Fummi
(Coordinator)
|
1° 2° | HW components design on FPGA | D |
Franco Fummi
(Coordinator)
|
1° 2° | Rapid prototyping on Arduino | D |
Franco Fummi
(Coordinator)
|
1° 2° | Protection of intangible assets (SW and invention)between industrial law and copyright | D |
Roberto Giacobazzi
(Coordinator)
|
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° | Python programming language | D |
Giulio Mazzi
(Coordinator)
|
Computer Vision (2021/2022)
Teaching code
4S009013
Credits
6
Language
English
Scientific Disciplinary Sector (SSD)
INF/01 - INFORMATICS
The teaching is organized as follows:
Teoria
Laboratorio
Learning outcomes
This course is aimed at providing the student with the practical and theoretical tools that enables the recovery of the three-dimensional structure of a scene starting from its two-dimensional projections, the images. Formal methods are provided for image acquisition and extraction of 3D information on several applicative contexts by focusing on the processing of real and noisy data. At the end of the course, the student will be able to implement a new vision system, also in a research context, through the integration of different formal methods on the 3D estimation from images and the use of different acquisition sensors. This knowledge will allow the student to: i) exploit the knowledge of computer vision on different applicative scenarios; ii) master the analysis of real and heterogeneous data; iii) address real time performances. At the end of the course, the student will be able to: i) identify the vision method most suitable to the involved applicative context, and customize the vision system involving other disciplines like machine learning; ii) continue independently his/her studies in the field of computer vision and analysis of 3D data independently.
Program
- Geometry of the pinhole camera
- Calibration
- Epipolar geometry
- Triangulation
- Planes and homographies
- Structure and motion from images
- Autocalibration
- Dealing with noise and outliers
- Image matching
- Non-rigid objects
- Laboratory exercise
Bibliography
Examination Methods
The exam can be obtained with three different options:
A) Oral with discussion on lab exercise (max 28/30, average between the two modalities).
B) Project with discussion on lab exercise (max 28/30, average between the two modalities).
C) Oral+Project (average between the two modalities).
Oral is a discussion on the program. The aim is to verify the knowledge of theoretical and practical aspects of involved topics.
The discussion of lab exercise consists of the delivering of an archive with the scripts that implement the vision algorithms described in the program. The discussion aims at verifying the correct practical implementation of the theoretical aspects addressed during the course.
The project is focused on a specific and innovative topic that is identified with the teacher. The topic can be an open issue of the state of the art or a specific applicative theme. The student will be able to generalize the knowledge acquired during the course for the solution of new computer vision problems.