Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Academic calendar
The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.
Course calendar
The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..
Period | From | To |
---|---|---|
I sem. | Oct 3, 2016 | Jan 31, 2017 |
II sem. | Mar 1, 2017 | Jun 9, 2017 |
Session | From | To |
---|---|---|
Sessione invernale Appelli d'esame | Feb 1, 2017 | Feb 28, 2017 |
Sessione estiva Appelli d'esame | Jun 12, 2017 | Jul 31, 2017 |
Sessione autunnale Appelli d'esame | Sep 1, 2017 | Sep 29, 2017 |
Session | From | To |
---|---|---|
Sessione estiva Appelli di Laurea | Jul 18, 2017 | Jul 18, 2017 |
Sessione autunnale Appelli di laurea | Nov 22, 2017 | Nov 22, 2017 |
Sessione invernale Appelli di laurea | Mar 20, 2018 | Mar 20, 2018 |
Period | From | To |
---|---|---|
Festa di Ognissanti | Nov 1, 2016 | Nov 1, 2016 |
Festa dell'Immacolata Concezione | Dec 8, 2016 | Dec 8, 2016 |
Vacanze di Natale | Dec 23, 2016 | Jan 8, 2017 |
Vacanze di Pasqua | Apr 14, 2017 | Apr 18, 2017 |
Anniversario della Liberazione | Apr 25, 2017 | Apr 25, 2017 |
Festa del Lavoro | May 1, 2017 | May 1, 2017 |
Festa della Repubblica | Jun 2, 2017 | Jun 2, 2017 |
Vacanze estive | Aug 8, 2017 | Aug 20, 2017 |
Exam calendar
Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.
Academic staff
Ugolini Simone
simone.ugolini@univr.itZoppello Marta
Study Plan
The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.
1° Year
Modules | Credits | TAF | SSD |
---|
2° Year activated in the A.Y. 2017/2018
Modules | Credits | TAF | SSD |
---|
3° Year activated in the A.Y. 2018/2019
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
CyberPhysical Laboratory (2018/2019)
Teaching code
4S007380
Academic staff
Coordinator
Credits
6
Also offered in courses:
- CyberPhysical Laboratory of the course Master's degree in Medical Bioinformatics
- CyberPhysical Laboratory of the course Master's degree in Computer Science and Engineering
- CyberPhysical Laboratory of the course Bachelor's degree in Bioinformatics
Language
Italian
Scientific Disciplinary Sector (SSD)
NN - -
Period
II semestre, I semestre
Learning outcomes
The course aims at providing tools for programming and controlling cyber-physical systems (e.g. mechatronic systems) using an unified approach between theory and practice. At the end of the course the student will have to demonstrate knowledge and ability to understand issues related to the physical modeling and control of cyber-physical systems taking into consideration the interaction between the cybernerical and the physical parts of a system; will have the ability to apply physical and control sciences (in particular mechanics, elactromagnetism and control theory) for the control of cyber-physical systems; will know how to develop the skills necessary to independently pursue the study in control algorithms for cyber-physical systems with awareness of the related technical and practical implications.
Program
- Foundations of embedded system programming: peripherals management, scheduling, acquisition and control loops
- Analog sensors, digital sensors, physical principles, communication and management software
- Actuators: principles of operation and control
- Control of physical quantities such as positions, speed and forces
- Control of robotic joints
- Implementation aspects
- Mobile Robots
- Robot Operating System (ROS)
- Information exchange mechanisms in cyber-physics systems (ROS publish / subscribe)
- Transform and sensors in ROS
- ROS bag
- Simulators in ROS
- version control tools (Git)
- Actions in ROS
Examination Methods
The final grade is achieved by presenting homeworks (maximum score 24) and an optional team project (maximum score 30L). The projects will consist of an extension of the examples presented during the course.
Type D and Type F activities
Modules not yet included
Career prospects
Module/Programme news
News for students
There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details: only in this way will you be able to receive notification of all the notices from your teachers and your secretariat via email and also via the Univr app.
Graduation
List of thesis proposals
theses proposals | Research area |
---|---|
Analisi e percezione dei segnali biometrici per l'interazione con robot | AI, Robotics & Automatic Control - AI, Robotics & Automatic Control |
Integrazione del simulatore del robot Nao con Oculus Rift | AI, Robotics & Automatic Control - AI, Robotics & Automatic Control |
Domain Adaptation | Computer Science and Informatics: Informatics and information systems, computer science, scientific computing, intelligent systems - Computer graphics, computer vision, multi media, computer games |
Domain Adaptation | Computer Science and Informatics: Informatics and information systems, computer science, scientific computing, intelligent systems - Machine learning, statistical data processing and applications using signal processing (e.g. speech, image, video) |
BS or MS theses in automated reasoning | Computing Methodologies - ARTIFICIAL INTELLIGENCE |
Domain Adaptation | Computing Methodologies - IMAGE PROCESSING AND COMPUTER VISION |
Domain Adaptation | Computing methodologies - Machine learning |
Dati geografici | Information Systems - INFORMATION SYSTEMS APPLICATIONS |
Analisi e percezione dei segnali biometrici per l'interazione con robot | Robotics - Robotics |
Integrazione del simulatore del robot Nao con Oculus Rift | Robotics - Robotics |
BS or MS theses in automated reasoning | Theory of computation - Logic |
BS or MS theses in automated reasoning | Theory of computation - Semantics and reasoning |
Proposte di tesi/collaborazione/stage in Intelligenza Artificiale Applicata | Various topics |
Proposte di Tesi/Stage/Progetto nell'ambito dell'analisi dei dati | Various topics |
Attendance modes and venues
As stated in the Teaching Regulations, attendance at the course of study is not mandatory.
Part-time enrolment is permitted. Find out more on the Part-time enrolment possibilities page.
The course's teaching activities take place in the Science and Engineering area, which consists of the buildings of Ca‘ Vignal 1, Ca’ Vignal 2, Ca' Vignal 3 and Piramide, located in the Borgo Roma campus.
Lectures are held in the classrooms of Ca‘ Vignal 1, Ca’ Vignal 2 and Ca' Vignal 3, while practical exercises take place in the teaching laboratories dedicated to the various activities.