Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
I semestre Oct 1, 2018 Jan 31, 2019
II semestre Mar 4, 2019 Jun 14, 2019
Exam sessions
Session From To
Sessione invernale d'esame Feb 1, 2019 Feb 28, 2019
Sessione estiva d'esame Jun 17, 2019 Jul 31, 2019
Sessione autunnale d'esame Sep 2, 2019 Sep 30, 2019
Degree sessions
Session From To
Sessione di laurea estiva Jul 22, 2019 Jul 22, 2019
Sessione di laurea autunnale Oct 15, 2019 Oct 15, 2019
Sessione di laurea invernale Mar 19, 2020 Mar 19, 2020
Holidays
Period From To
Sospensione attività didattica Nov 2, 2018 Nov 3, 2018
Vacanze di Natale Dec 24, 2018 Jan 6, 2019
Vacanze di Pasqua Apr 19, 2019 Apr 28, 2019
Vacanze estive Aug 5, 2019 Aug 18, 2019

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrollment FAQs

Academic staff

A B C D G L M O R S W

Agostiniani Virginia

symbol email virginia.agostiniani@univr.it symbol phone-number +39 045 802 7979

Albi Giacomo

symbol email giacomo.albi@univr.it symbol phone-number +39 045 802 7913

Angeleri Lidia

symbol email lidia.angeleri@univr.it symbol phone-number 045 802 7911

Baldo Sisto

symbol email sisto.baldo@univr.it symbol phone-number 0458027935

Bos Leonard Peter

symbol email leonardpeter.bos@univr.it symbol phone-number +39 045 802 7987

Boscaini Maurizio

symbol email maurizio.boscaini@univr.it

Busato Federico

symbol email federico.busato@univr.it

Caliari Marco

symbol email marco.caliari@univr.it symbol phone-number +39 045 802 7904

Castellini Alberto

symbol email alberto.castellini@univr.it symbol phone-number +39 045 802 7908

Daldosso Nicola

symbol email nicola.daldosso@univr.it symbol phone-number +39 045 8027076 - 7828 (laboratorio)

Di Persio Luca

symbol email luca.dipersio@univr.it symbol phone-number +39 045 802 7968

Gregorio Enrico

symbol email Enrico.Gregorio@univr.it symbol phone-number 045 802 7937

Laking Rosanna Davison

symbol email rosanna.laking@univr.it

Mantese Francesca

symbol email francesca.mantese@univr.it symbol phone-number +39 0458027978

Marigonda Antonio

symbol email antonio.marigonda@univr.it symbol phone-number +39 045 802 7809
Foto,  October 5, 2015

Mazzuoccolo Giuseppe

symbol email giuseppe.mazzuoccolo@univr.it symbol phone-number +39 0458027838

Migliorini Sara

symbol email sara.migliorini@univr.it symbol phone-number +39 045 802 7908

Monti Francesca

symbol email francesca.monti@univr.it symbol phone-number 045 802 7910

Orlandi Giandomenico

symbol email giandomenico.orlandi at univr.it symbol phone-number 045 802 7986

Rizzi Romeo

symbol email romeo.rizzi@univr.it symbol phone-number +39 045 8027088

Sansonetto Nicola

symbol email nicola.sansonetto@univr.it symbol phone-number 045-8027976

Schuster Peter Michael

symbol email peter.schuster@univr.it symbol phone-number +39 045 802 7029

Solitro Ugo

symbol email ugo.solitro@univr.it symbol phone-number +39 045 802 7977
wessel,  May 3, 2019

Wessel Daniel

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.

CURRICULUM TIPO:

2° Year   activated in the A.Y. 2019/2020

ModulesCreditsTAFSSD
6
B
MAT/05
Final exam
32
E
-
activated in the A.Y. 2019/2020
ModulesCreditsTAFSSD
6
B
MAT/05
Final exam
32
E
-
Modules Credits TAF SSD
Between the years: 1°- 2°
To be chosen between
Between the years: 1°- 2°
Between the years: 1°- 2°
Other activities
4
F
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S003200

Coordinator

Nicola Daldosso

Credits

6

Language

English en

Scientific Disciplinary Sector (SSD)

FIS/01 - EXPERIMENTAL PHYSICS

Period

II semestre dal Mar 4, 2019 al Jun 14, 2019.

Learning outcomes

The course deals with Physics themes that are fundamental for the scientific training of the future School teachers by means of a guided training module in which in addition to the excecution of simple experiments, particular attention is devoted to the preparation of the experiments themselves (e.g. Experiment Description Sheet), the physical set up of the experiments (with different materials and instruments), the definition and the comparison of the experimental methods and procedures, the analysis and the discussion of the experimental data, and the preparation of laboratory and teaching reports. Students are guided to experiments and design instruction strategies aimed at helping high school pupils in understanding physics. They acquire familiarity with both traditional and new teaching tools and multimedia and technologies.

Program

- Errors theory and basics of Mechanics
- Electricity and Circuits
- Geometrical optics fundamentals
- Principles of wave optics
- Thormology and calorimetry

LABORATORY
- Creation of a setup for experiments
- Preparation of laboratory sheets
- Analysis of the experimental data

Experiments :
- Hooke law
- Deviation and distribution of forces in simple machines
- simple pendulum (g determination)
- Geometrical optics
- Wave optics (interference and diffraction )

Reference texts
Author Title Publishing house Year ISBN Notes
Paolo Fornasini The Uncertainty in Physical Measurements (An introduction to data analysis in the Physics Laboratory) Springer 2008 9780387786490

Examination Methods

During the exam, students must show that:
- they know and understand the fundamental concepts of Experimental Error Theory, measurements instruments and experimental methodology
- they have a good capability of realizing an experiment
- they are able to analyse and discuss experimental data in a Laboratory Report.

The exam consists of an oral examination and in a written part. This last is a Laboratory Report on one of the experiments performed during the year. The admission to the oral exam is subject to the approval of the written test.

Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE

Type D and Type F activities

Modules not yet included

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details: only in this way will you be able to receive notification of all the notices from your teachers and your secretariat via email and soon also via the Univr app.

Alternative learning activities

In order to make the study path more flexible, it is possible to request the substitution of some modules with others of the same course of study in Mathematics at the University of Verona (if the educational objectives of the modules to be substituted have already been achieved in the previous career), or with others of the course of study in Mathematics at the University of Trento.

Documents


Attendance

As stated in the Teaching Regulations for the A.Y. 2022/2023, except for specific practical or lab activities, attendance is not mandatory. Regarding these activities, please see the web page of each module for information on the number of hours that must be attended on-site.
 


Career management


Student login and resources


Graduation

Deadlines and administrative fulfilments

For deadlines, administrative fulfilments and notices on graduation sessions, please refer to the Graduation Sessions - Science and Engineering service.

Need to activate a thesis internship

For thesis-related internships, it is not always necessary to activate an internship through the Internship Office. For further information, please consult the dedicated document, which can be found in the 'Documents' section of the Internships and work orientation - Science e Engineering service.

Final examination regulations

Upon completion of the Master’s degree dissertation students are awarded 32 CFU. The final examination consists of a written dissertation on a specific topic agreed with a supervising professor and presented to a commission (Dissertation Committee).

The dissertation can be high-level theoretical or experimental (in the latter case, it may focus on either basic or applied research), it can deal with a theoretical topic or propose the resolution of a specific problem, or description of a work project, and may be carried out at universities, research institutions, schools, laboratories and companies in the framework of internships, traineeships, study stays in Italy and abroad. The dissertation must be original and written by the student under the guidance of a Supervisor. At the request of the student, the dissertation may be written and presented in Italian.

Professors belonging to the Mathematics Teaching Committee, the Department of Computer Science, and any associated departments may be appointed as Supervisors, as well as any professors from the University of Verona whose area of interest (SSD - Scientific-disciplinary Sector) is included in the teaching regulations of the degree programme.

Students may take the final exam only if meeting all requirements set by the School of Sciences and Engineering.

The Master's degree in Mathematics is obtained by successfully passing the final examination and thus earning the 120 CFU included in the study plan.

The material submitted by the student for the final examination will be examined by the Dissertation Committee, which comprises three professors, possibly including the Supervisor, and appointed by the President of the Teaching Committee. The final examination will be assessed based on the following criteria: the student’s performance during the entire study programme, the knowledge acquired during the dissertation work, their understanding of the topic and autonomy of judgment, their ability to apply such knowledge, and communicate effectively and fully all the outcomes of the work and the main results obtained.

The final examination and the degree ceremony will be carried out, in one of the four graduation sessions throughout the academic year, by the Final Examination Committee appointed by the President of the Teaching Committee, and made up of a president and at least four members chosen from among the professors of the University.

For further information, please refer to the Final examination regulations.

Documents

Title Info File
File pdf 1. Come scrivere una tesi pdf, it, 31 KB, 02/11/22
File pdf 2. How to write a thesis pdf, en, 31 KB, 02/11/22
File pdf 5. Regolamento tesi pdf, it, 171 KB, 20/03/24

List of thesis proposals

theses proposals Research area
Controllo di sistemi multiagente Calculus of variations and optimal control; optimization - Hamilton-Jacobi theories, including dynamic programming
Controllo di sistemi multiagente Calculus of variations and optimal control; optimization - Manifolds
Controllo di sistemi multiagente Calculus of variations and optimal control; optimization - Optimality conditions
Formule di rappresentazione per gradienti generalizzati Mathematics - Analysis
Formule di rappresentazione per gradienti generalizzati Mathematics - Mathematics
Mathematics Bachelor and Master thesis titles Various topics

Erasmus+ and other experiences abroad