Training and Research

PhD Programme Courses/classes

This page shows the PhD course's training activities for the academic year 2024/2025. Further activities will be added during the year. Please check regularly for updates!

Instructions for teachers: lesson management

Introduction to Economics

Credits: 5

Language: English

Teacher:  Roberto Ricciuti

Mathematics

Credits: 3.8

Language: English

Teacher:  Andrea Mazzon

Probability

Credits: 7.5

Language: English

Teacher:  Marco Minozzo

Mathematical Statistics

Credits: 5

Language: English

Teacher:  Lorenzo Frattarolo, Claudia Di Caterina

Continuous Time Econometrics

Credits: 5

Language: English

Teacher:  Chiara Amorino, Amorino Chiara, Cecilia Mancini

Macroeconomics I

Credits: 7.5

Language: English

Teacher:  Khalid W A Shomali, Alessia Campolmi

Microeconomics 1

Credits: 7.5

Language: English

Teacher:  Claudio Zoli, Martina Menon, Maurizio Malpede

Field Experiments

Credits: 1

Language: Italian

Teacher:  Pol Campos

Game Theory

Credits: 5

Language: English

Teacher:  Francesco De Sinopoli

Elements of Financial Risk Management

Credits: 2.5

Language: English

Teacher:  Prof. Kim Christensen

Stochastic Optimization and Control

Credits: 5

Language: English

Teacher:  Athena Picarelli

Financial Time Series

Credits: 5

Language: English

Teacher:  Giuseppe Buccheri

Job Market Orientation

Credits: 1

Language: English

Teacher:  Simone Quercia

Advice to Young Researchers

Credits: 4

Language: English

Teacher:  Marco Piovesan

Finanza Matematica

Credits: 5

Language: English

Teacher:  Guido Gazzani, Alessandro Gnoatto

Behavioral and Experimental Economics

Credits: 4

Language: English

Teacher:  Simone Quercia, Maria Vittoria Levati, Marco Piovesan

Inequality

Credits: 4

Language: English

Teacher:  Francesco Andreoli, Claudio Zoli

Development economics

Credits: 4

Language: English

Teacher:  Federico Perali

Health Economics

Credits: 4

Language: English

Teacher:  Paolo Pertile

Political Economy

Credits: 4

Language: English

Teacher:  Emanuele Bracco, Roberto Ricciuti

Quantitative research methods

Credits: 6.8

Language: English

Teacher:  Luca Grassetti, Francesca Visintin, Laura Pagani

Stochastic Processes in Finance

Credits: 5

Language: English

Teacher:  Sara Svaluto Ferro

Credits

7.5

Language

English

Class attendance

Free Choice

Location

VERONA

Learning objectives

The course aims at providing students with basic background in the field of graduate macroeconomics. The focus will be on real and monetary models of the business cycle as well as long-run growth. The learning outcomes of the course are: understanding of the general framework used to study macro issues in modern macro; development of technical skills that enable students to critically evaluate core papers in the field; development of skills that enable students to take more advanced, topic-specific, macro courses.

Prerequisites and basic notions

None

Program

Part 1 – Long-Run Growth
12 hours – Lecturer: Tamara Fioroni
- Questions and evidence
- The Solow growth model
- Overlapping Generations model
Part 2 – Real Business Cycle (RBC)
8 hours – Lecturer: Alessia Campolmi
- Empirical evidence on business cycle.
- Different types of macro models: What they are used for, weaknesses and strength.
- The basic version of the models we will focus on in this course: Ramsey model.
- Common extensions
Part 3 – Monetary Business Cycle
10 hours – Lecturer: Alessia Campolmi
- Empirical evidence on price rigidity.
- Different types of monetary macro models.
- The basic version of the model we will focus on: New Keynesian model.
- Common extensions.

Bibliography

Visualizza la bibliografia con Leganto, strumento che il Sistema Bibliotecario mette a disposizione per recuperare i testi in programma d'esame in modo semplice e innovativo.

Didactic methods

Frontal teaching.

Learning assessment procedures

1h30 Written exam

Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE

Assessment

Knowledge of the models analyzed in class

Criteria for the composition of the final grade

The exam will cover Part 1 and 2. Each part will account for 50% of the final grade.

Scheduled Lessons

When Classroom Teacher topics
Friday 08 November 2024
14:00 - 17:00
Duration: 3:00 AM
Polo Santa Marta - Sala Andrea Vaona (DSE) [1.59 - 1] Alessia Campolmi Introduction
Wednesday 13 November 2024
14:00 - 17:00
Duration: 3:00 AM
Polo Santa Marta - Sala Andrea Vaona (DSE) [1.59 - 1] Alessia Campolmi RBC model
Friday 15 November 2024
14:00 - 17:00
Duration: 3:00 AM
Polo Santa Marta - Sala Andrea Vaona (DSE) [1.59 - 1] Alessia Campolmi RBC model
Wednesday 20 November 2024
14:00 - 17:00
Duration: 3:00 AM
Polo Santa Marta - Sala Andrea Vaona (DSE) [1.59 - 1] Alessia Campolmi Comparing RBC against Macro Data - Empirical Evidence motivating NK models
Friday 22 November 2024
14:00 - 17:00
Duration: 3:00 AM
Polo Santa Marta - Sala Andrea Vaona (DSE) [1.59 - 1] Alessia Campolmi NK model
Wednesday 27 November 2024
14:00 - 17:00
Duration: 3:00 AM
Polo Santa Marta - Sala Andrea Vaona (DSE) [1.59 - 1] Alessia Campolmi NK model
Monday 02 December 2024
14:00 - 17:00
Duration: 3:00 AM
Polo Santa Marta - Sala Andrea Vaona (DSE) [1.59 - 1] Khalid W A Shomali Chapter one of Acemoglu 2009 Introduction to Modern Economic Growth
Thursday 05 December 2024
14:00 - 17:00
Duration: 3:00 AM
Polo Santa Marta - Sala Andrea Vaona (DSE) [1.59 - 1] Khalid W A Shomali Chapter two of Acemoglu 2009 Introduction to Modern Economic Growth
Monday 09 December 2024
14:00 - 17:00
Duration: 3:00 AM
Polo Santa Marta - Sala Andrea Vaona (DSE) [1.59 - 1] Khalid W A Shomali Chapter three of Acemoglu 2009 Introduction to Modern Economic Growth
Thursday 12 December 2024
14:00 - 17:00
Duration: 3:00 AM
Polo Santa Marta - SMT.04 [SMT.4 - terra] Khalid W A Shomali Exercises