Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Type D and Type F activities
Le attività formative di tipologia D sono a scelta dello studente, quelle di tipologia F sono ulteriori conoscenze utili all’inserimento nel mondo del lavoro (tirocini, competenze trasversali, project works, ecc.). In base al Regolamento Didattico del Corso, alcune attività possono essere scelte e inserite autonomamente a libretto, altre devono essere approvate da apposita commissione per verificarne la coerenza con il piano di studio. Le attività formative di tipologia D o F possono essere ricoperte dalle seguenti attività.
1. Insegnamenti impartiti presso l'Università di Verona
Comprendono gli insegnamenti sotto riportati e/o nel Catalogo degli insegnamenti (che può essere filtrato anche per lingua di erogazione tramite la Ricerca avanzata).
Modalità di inserimento a libretto: se l'insegnamento è compreso tra quelli sottoelencati, lo studente può inserirlo autonomamente durante il periodo in cui il piano di studi è aperto; in caso contrario, lo studente deve fare richiesta alla Segreteria, inviando a carriere.scienze@ateneo.univr.it il modulo nel periodo indicato.
2. Attestato o equipollenza linguistica CLA
Oltre a quelle richieste dal piano di studi, per gli immatricolati dall'A.A. 2021/2022 vengono riconosciute:
- Lingua inglese: vengono riconosciuti 3 CFU per ogni livello di competenza superiore a quello richiesto dal corso di studio (se non già riconosciuto nel ciclo di studi precedente).
- Altre lingue e italiano per stranieri: vengono riconosciuti 3 CFU per ogni livello di competenza a partire da A2 (se non già riconosciuto nel ciclo di studi precedente).
Tali cfu saranno riconosciuti, fino ad un massimo di 6 cfu complessivi, di tipologia F se il piano didattico lo consente, oppure di tipologia D. Ulteriori crediti a scelta per conoscenze linguistiche potranno essere riconosciuti solo se coerenti con il progetto formativo dello studente e se adeguatamente motivati.
Gli immatricolati fino all'A.A. 2020/2021 devono consultare le informazioni che si trovano qui.
Modalità di inserimento a libretto: richiedere l’attestato o l'equipollenza al CLA e inviarlo alla Segreteria Studenti - Carriere per l’inserimento dell’esame in carriera, tramite mail: carriere.scienze@ateneo.univr.it
3. Competenze trasversali
Scopri i percorsi formativi promossi dal TALC - Teaching and learning center dell'Ateneo, destinati agli studenti regolarmente iscritti all'anno accademico di erogazione del corso https://talc.univr.it/it/competenze-trasversali
Modalità di inserimento a libretto: non è previsto l'inserimento dell'insegnamento nel piano di studi. Solo in seguito all'ottenimento dell'Open Badge verranno automaticamente convalidati i CFU a libretto. La registrazione dei CFU in carriera non è istantanea, ma ci saranno da attendere dei tempi tecnici.
4. Contamination lab
Il Contamination Lab Verona (CLab Verona) è un percorso esperienziale con moduli dedicati all'innovazione e alla cultura d'impresa che offre la possibilità di lavorare in team con studenti e studentesse di tutti i corsi di studio per risolvere sfide lanciate da aziende ed enti. Il percorso permette di ricevere 6 CFU in ambito D o F. Scopri le sfide: https://www.univr.it/clabverona
ATTENZIONE: Per essere ammessi a sostenere una qualsiasi attività didattica, incluse quelle a scelta, è necessario essere iscritti all'anno di corso in cui essa viene offerta. Si raccomanda, pertanto, ai laureandi delle sessioni di dicembre e aprile di NON svolgere attività extracurriculari del nuovo anno accademico, cui loro non risultano iscritti, essendo tali sessioni di laurea con validità riferita all'anno accademico precedente. Quindi, per attività svolte in un anno accademico cui non si è iscritti, non si potrà dar luogo a riconoscimento di CFU.
PROCEDURA PER IL RICONOSCIMENTO DELL'ATTIVITA' LAVORATIVA COME CREDITI DI STAGE
Come previsto da delibera del collegio didattico di Matematica e Data Science n°8 -23/24, lo studente che intende farsi riconoscere ore di attività lavorativa come crediti di stage, prima dell'inizio dell'attività, è tenuto ad inviare all'indirizzo mail della segreteria studenti e in copia conoscenza alla commissione pratiche studenti (paolo.daipra@univr.it, luca.dipersio@univr.it, barbara.gaudenzi@univr.it) esplicita richiesta. Nella richiesta va specificato il tipo di attività, nome dell’azienda e sede lavorativa e ore/crediti di cui si sta chiedendo il riconoscimento.
Affinché l'attività sia riconoscibile è d'obbligo che si sia svolta durante gli anni di iscrizione al corso di studi. Una volta accertata la coerenza tra l'attività lavorativa in essere e gli obiettivi del corso, lo studente riceverà tempestiva comunicazione dalla commissione pratiche studenti con in copia conoscenza la segreteria.
Al termine del periodo lavorativo stabilito, lo studente invia alla segreteria studenti la seguente documentazione:
- relazione finale dettagliata che viene inoltrata alla commissione per l’approvazione finale (firmata dallo studente e da un referente aziendale);
- una dichiarazione del legale rappresentante dell'azienda/ente e/o documentazione atta a dimostrare la tipologia di attività professionale e l'impegno orario ad essa dedicato.
La segreteria studenti provvederà all'invio della documentazione ricevuta alla commissione pratiche studenti e alla registrazione dei CFU (taf F ed eventuali ulteriori crediti taf D) deliberati dalla commissione stessa.
Insegnamenti e altre attività che si possono inserire autonomamente a libretto valide per l'a.a. 2024/25
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° | Elements of Cosmology and General Relativity | D |
Claudia Daffara
(Coordinator)
|
1° 2° | Introduction to quantum mechanics for quantum computing | D |
Claudia Daffara
(Coordinator)
|
1° 2° | Python programming language [English edition] | D |
Carlo Combi
(Coordinator)
|
1° 2° | APP REACT PLANNING | D |
Graziano Pravadelli
(Coordinator)
|
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° | Python programming language [Edizione in italiano] | D |
Carlo Combi
(Coordinator)
|
1° 2° | Programming Challanges | D |
Romeo Rizzi
(Coordinator)
|
1° 2° | Protection of intangible assets (SW and invention)between industrial law and copyright | D |
Mila Dalla Preda
(Coordinator)
|
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° | Mathematics mini courses |
Giacomo Albi
(Coordinator)
|
Big data epistemology (2024/2025)
Teaching code
4S009088
Teacher
Coordinator
Credits
6
Also offered in courses:
- Big data epistemology of the course Master's degree in Data Science
Language
English
Scientific Disciplinary Sector (SSD)
M-FIL/02 - LOGIC AND PHILOSOPHY OF SCIENCE
Period
Semester 2 dal Mar 3, 2025 al Jun 13, 2025.
Courses Single
Authorized
Learning objectives
The course will allow the student to acquire the skills necessary to apply the key concepts of epistemology (knowledge, methodology, justification, explanation, etc.) to the specific case of data science and to the discussion of consequences and implications of big data for society in general. At the end of the course the student has to show to have acquired the following skills:
- recognize and discuss the main epistemological issues relating to the knowledge produced by the collection and manipulation of big data, in particular for what concerns the topics: (1) epistemological specificity of big data; (2) the impact of big data on scientific work; (3) Big Data and cultural authority of science
- having acquired, through detailed analysis of real life situations, the tools for a more conscious and critical approach to the work of data analyst, as well as for the management and dissemination of big data in public domains.
Prerequisites and basic notions
Basic knowledge of philosophy and critical thinking.
Program
The course is dedicated to exploring the epistemological, social, and political issues related to the use of big data, machine learning, and artificial intelligence. The program is divided into two main modules:
(A) Producing knowledge in the digital age. This module addresses the epistemological questions raised by the use of machine learning and big data in the production of scientific knowledge. Examples of such questions include: How do big data change our scientific practices and methods? What are the limitations of the computational approach to science? Do big data make theories redundant? What are the epistemological characteristics of statistical learning? The structure of the module is as follows:
(A.1) Introduction to the epistemology of computability: complexity and undecidability.
(A.2) The concepts of data, probability, and information.
(A.3) From statistical inference to machine learning and big data.
(B) Socio-epistemology of big data. The second module deals with the socio-epistemological and political impact of machine learning and big data on scientific practice and society in general. Examples of the issues addressed in this module include: What is the impact of using big data on the social structure of scientific research? How can artificial intelligence be made more explainable and accountable? How are digital environments such as social networks influenced by machine learning? The structure of the module is as follows:
(B.1) Scientific research and big data.
(B.2) Explainable artificial intelligence.
(B.3) Truth and post-truth in digital environments.
Didactic methods
Classes will be held in presence and recorded.
Learning assessment procedures
The course will combine introductory lectures and class discussions. The final assessment consists of two elements:
(1) A written paper (max 3000 words) (40%)
(2) Oral exam (60%)
Evaluation criteria
The final assessment consists of two elements:
(1) A written paper (max 3000 words) (40%)
(2) Oral exam (60%)
Criteria for the composition of the final grade
The final assessment consists of two elements:
(1) A written paper (max 3000 words) (40%)
(2) Oral exam (60%)
Exam language
English