Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

This information is intended exclusively for students already enrolled in this course.
If you are a new student interested in enrolling, you can find information about the course of study on the course page:

Laurea in Biotecnologie - Enrollment from 2025/2026

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.

2° Year  activated in the A.Y. 2013/2014

ModulesCreditsTAFSSD
6
B
BIO/18

3° Year  activated in the A.Y. 2014/2015

ModulesCreditsTAFSSD
6
A
FIS/07
12
C
BIO/04 ,BIO/09
Prova finale
3
E
-
activated in the A.Y. 2013/2014
ModulesCreditsTAFSSD
6
B
BIO/18
activated in the A.Y. 2014/2015
ModulesCreditsTAFSSD
6
A
FIS/07
12
C
BIO/04 ,BIO/09
Prova finale
3
E
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S00004

Credits

6

Language

Italian

Scientific Disciplinary Sector (SSD)

FIS/07 - APPLIED PHYSICS

The teaching is organized as follows:

Teoria

Credits

5

Period

II semestre

Academic staff

Valerio Dallacasa

Esercitazioni

Credits

1

Period

II semestre

Academic staff

Valerio Dallacasa

Learning outcomes

This course aims at giving the basic knowledge of the concepts of mechanics, thermodynamics and electromagnetism to students and the capacity of using the laws of these phenomena in a predictive way. The aim of the course is also to furnish the fundamentals of the experimental method and the concepts by which students can autonomously attack problems involving such phenomena. The course comprises mathematical numerical exercises to allowing students to succesfully operate in the final exam.

Program

Physical quantities and measure. Scalars and vectors. Kinematics of material points. Position, displacement, velocity and acceleration. Rectilinear and curvilinear motion. Vector character of kinematic quantities and Cartesian components. The time-varying trajectory. Uniformly accelerated motions. Circular motion. Curvilinear planar motion. Dynamics of the material point. Newton's law. Applications to motion on inclined planes,
gravitational motion. The universal law of gravitation. Forces of practical interest: gravity, friction. Energy and work. Kinetic energy. Theorem of kinetic energy. Conservative forces. Potential energy. Mechanical energy conservation. Internal and external forces. Action and reaction principle.

Fluids. Density. Pressure. Pascal' s law. Stevin's law. Archimedes' principle. Applications: floating in fluids, pressure in liquids, atmospheric pressure. Bernoulli's theorem for moving fluids. Applications: liquids through holes, venturimeter, force on aircrafts.
The notion of temperature. Dilation of bodies. Specific heat. Heat. Thermometers. State changes. Latent heat. Perfect gases. Law of gases.
Thermodynamics. Thermodynamic processes. The first law of thermodynamics. Examples of applications. Thermodynamic circles. Internal energy. Thermodynamic work. The entropy concept. Carnot' s circle. Circle efficiency. The absolute temperature. The absolute zero.

Electrical phenomena in matter: conductors and insulators. Electric charges. Coulomb' s
law. Electric field. Electric field of continuous and discrete charge distributions. Work of the electric field. Electrostatic potential. Electrostatic potential energy. Calculation of the electric potential of a system of charges. Motion of charges in electric fields. Conductors. Dielectrics. Stationary electric current. Charge conservation in stationary regime. Ohm' s
law. Resistance. Joule's effect. Electromotive force. Kirchhoff laws. Magnetism:phenomenology. Magnetic induction vector. Magnetic force on a moving charge and a current-carrying conductor. Magnetic field of a current-Biot&Savart law. Application to wires, coils, solenoids. Forces between electric currents. Time-varying magnetic fields - Faraday's-Lentz's law. Applications of Faraday's law. The principal optics phenomena. Reflection, refraction, mirrors, lenses. Total reflection. Basics of interference and diffraction

Examination Methods

The final examination will be conducted by a written elaborateof exercises on the diverse arguments treated in the course and a successive oral session at a student's request

Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE