Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

A.A. 2011/2012

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
I semestre Oct 3, 2011 Jan 31, 2012
II semestre Mar 1, 2012 Jun 15, 2012
Exam sessions
Session From To
Sessione straordinaria Feb 1, 2012 Feb 29, 2012
Sessione estiva Jun 18, 2012 Jul 31, 2012
Sessione autunnale Sep 3, 2012 Sep 28, 2012
Degree sessions
Session From To
Sessione autunnale Oct 12, 2011 Oct 12, 2011
Sessione straordinaria Dec 15, 2011 Dec 15, 2011
Sessione invernale Mar 14, 2012 Mar 14, 2012
Sessione estiva Jul 18, 2012 Jul 18, 2012
Holidays
Period From To
Festa di Ognissanti Nov 1, 2011 Nov 1, 2011
Festa dell'Immacolata Concezione Dec 8, 2011 Dec 8, 2011
Vacanze Natalizie Dec 22, 2011 Jan 6, 2012
Vacanze Pasquali Apr 5, 2012 Apr 10, 2012
Festa della Liberazione Apr 25, 2012 Apr 25, 2012
Festa del Lavoro May 1, 2012 May 1, 2012
Festa del Patrono di Verona S. Zeno May 21, 2012 May 21, 2012
Festa della Repubblica Jun 2, 2012 Jun 2, 2012
Vacanze estive Aug 8, 2012 Aug 15, 2012

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrolment FAQs

Academic staff

A B C D F L M P R S V

Assfalg Michael

michael.assfalg@univr.it +39 045 802 7949

Astegno Alessandra

alessandra.astegno@univr.it 045802 7955

Bassi Roberto

roberto.bassi@univr.it 045 802 7916; Lab: 045 802 7915

Bettinelli Marco Giovanni

marco.bettinelli@univr.it 045 802 7902

Buffelli Mario Rosario

mario.buffelli@univr.it +39 0458027268
foto,  March 16, 2015

Cecchi Franco

franco.cecchi@univr.it 045 802 7964 - 7965

Crimi Massimo

massimo.crimi@univr.it 045 802 7924; Lab: 045 802 7050

Dall'Osto Luca

luca.dallosto@univr.it +39 045 802 7806

Delledonne Massimo

massimo.delledonne@univr.it 045 802 7962; Lab: 045 802 7058

Dell'Orco Daniele

daniele.dellorco@univr.it +39 045 802 7637

Dominici Paola

paola.dominici@univr.it 045 802 7966; Lab: 045 802 7956-7086

D'Onofrio Mariapina

mariapina.donofrio@univr.it 045 802 7801

Drago Nicola

nicola.drago@univr.it 045 802 7081

Furini Antonella

antonella.furini@univr.it 045 802 7950; Lab: 045 802 7043

Lampis Silvia

silvia.lampis@univr.it 045 802 7095

Marastoni Corrado

maraston@math.unipd.it

Marzola Pasquina

pasquina.marzola@univr.it 045 802 7816 (ufficio); 045 802 7614 (laboratorio)

Molesini Barbara

barbara.molesini@univr.it 045 802 7550
Foto,  April 9, 2014

Monaco Ugo Luigi

hugo.monaco@univr.it 045 802 7903; Lab: 045 802 7907 - 045 802 7082

Perduca Massimiliano

massimiliano.perduca@univr.it +39 045 802 7984

Romeo Alessandro

alessandro.romeo@univr.it +39 045 802 7974-7936; Lab: +39 045 802 7808

Spena Angelo

angelo.spena@univr.it 045 683 5623
Foto personale,  July 18, 2012

Vallini Giovanni

giovanni.vallini@univr.it 045 802 7098; studio dottorandi: 045 802 7095

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

ModulesCreditsTAFSSD
12
B
(BIO/11)
6
C
(CHIM/02)
6
B
(BIO/18)

1° Year

ModulesCreditsTAFSSD
12
B
(BIO/04)
9
A
(CHIM/06)
6
A
(FIS/07)
12
A
(MAT/05 ,MAT/06)

2° Year

ModulesCreditsTAFSSD
12
B
(BIO/11)
6
C
(CHIM/02)
6
B
(BIO/18)

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




SPlacements in companies, public or private institutions and professional associations

Teaching code

4S00800

Credits

12

Coordinatore

Massimiliano Perduca

Scientific Disciplinary Sector (SSD)

BIO/11 - MOLECULAR BIOLOGY

Language

Italian

The teaching is organized as follows:

Teoria

Credits

9

Period

II semestre

Academic staff

Massimiliano Perduca

Laboratorio [1° turno]

Credits

3

Period

II semestre

Academic staff

Barbara Molesini

Laboratorio [2° turno]

Credits

3

Period

II semestre

Academic staff

Barbara Molesini

Laboratorio [3° turno]

Credits

3

Period

II semestre

Academic staff

Barbara Molesini

Laboratorio [4° turno]

Credits

3

Period

II semestre

Academic staff

Barbara Molesini

???OrarioLezioni???

Learning outcomes

The aim of this course is to give the students the basic knowledge of the molecular mechanisms concerning transmission, variation and expression of the genetic information.

Program

Theory:
-> Genetic information and informational molecules
General introduction and historical hints. The chemical structure of DNA and RNA. Three dimensional structure of DNA. Physico-chemical properties of DNA.
-> Molecular Biology techniques
Agarose gel electrophoresis. Nucleic acid hybridization. Polymerase chain reaction (PCR). Restriction endonucleases. Cloning and sub-cloning. gene expression systems.
-> DNA, RNA and gene structure
Definition of gene coding and regulatory regions. From genes to proteins; messenger RNA, transfer RNA and ribosomal RNA.
-> Genome organization and evolution
DNA content and number of genes. Mutations, DNA rearrangement and genome evolution. The organelle genomes. Interrupted genes; introns. cDNA. Gene families and duplication. DNA repeats.
-> Transposable elements
Transposition mechanisms and control. Retroviruses and retrotransposones. Transposons.
-> Chromatin and chromosomes
Nucleosomes, histones and their modifications. Higher organization levels of chromatin. Heterochromatin and euchromatin. Eukaryotic chromosomes, telomeres and centromeres.
-> DNA replication
DNA polymerases. Proofreading activity of DNA polymerases. Replication mechanism in bacteria and eukaryotic cells.
-> Introns and RNA splicing
Features of spliceosomal introns. Spliceosome and splicing mechanism. Alternative splicing and trans-splicing. Other kinds of introns: group I and group II introns and tRNA introns. The intron movement. RNA editing. Ribozymes and riboswitch.
-> DNA mutation and repair
Spontaneous mutations and mutations caused by physical and chemical mutagens. Pre- and post-replicative repair systems. Recombination in the immunity system cells. Approaches to homologous recombination.
-> Regulation of gene expression
Bacterial promoters. The operon. Activators, repressors and coactivators. Signal transductions and two component regulation systems. Eukaryotic promoters. Activators, repressors and coactivators. Gene expression and chromatin modifications. Epigenetic mechanisms.
-> RNAs and transcription
Different types of RNA: synthesis and maturation. Bacterial RNA polymerase. Sigma factors. Eukaryotic RNA polymerases. Eukaryotic mRNAs: capping, polyadenylation, cytoplasmic localization. The transcription process in bacteria and in eukaryotic cells.
-> Translation
Ribosomes. tRNA structure and function. Aminoacyl-tRNA synthesis. Initiation in bacteria and eukaryotic cells. Polypeptide chain synthesis and translation end. Regulation of translation.
-> Protein localization.

One credit of the course (corresponding to 8 hours) will be kept for the students to discuss an important topic chosen from the research literature in Molecular Biology.

Introduction to the Laboratory Course:
-> Nucleic acids isolation: basis, comparison of several extraction protocols, nucleic acids isolation troubleshooting.
-> Nucleic acids electrophoresis: agarose gels, polyacrylamide gels, denaturing and non-denaturing gels, Pulsed-field gel electrophoresis.
-> Spectrophotometric quantitation of isolated nucleic acids.
-> PCR
1.What is PCR?
2. Reagents: efficiency, specificity, fidelity
3. PCR cycle. Final number of copies of the target sequence
4.Amplifying the correct product: detection and analysis of PCR products, how to avoid contamination (uracil N-glycosylase, UV, enzymatic treatment), hot start, nested PCR
5. Techniques and applications: 5’RACE-PCR and 3’RACE-PCR, RT-PCR, PCR mutagenesis (deletion of sequences, base substitutions, insertion mutagenesis), modification of PCR products (introduction of restriction sites, adding promoters and ribosome-binding sites), joining overlapping PCR products, quantitative PCR

Experiments:
Total RNA extraction from different plant tissues using methods based on acid guanidinium thiocyanate-phenol-chloroform and adsorption to silica-gel membranes, DNase treatment, qualitative and quantitative evaluation of isolated total RNA samples employing electrophoresis on microfabricated-chips, first strand cDNA synthesis, semiquantitative Reverse transcription polymerase chain reaction (RT-PCR) and Quantitative Real-Time PCR utilizing SYBR Green chemistry.

Examination Methods

Oral examination preceded by a propaedeutic written exam concerning the Laboratory Course.

Bibliografia

Reference texts
Activity Author Title Publishing house Year ISBN Notes
Teoria Jocelyn E. Krebs, Elliott S. Goldstein, Stephen T. Kilpatrick Lewin's Genes X (Edizione 10) Jones & Bartlett Publishers 2009 0763766321
Teoria Harvey Lodish, Chris A. Kaiser, Anthony Bretscher, Angelika Amon, Arnold Berk, Monty Krieger, Hidde Ploegh and Matthew P. Scott Molecular Cell Biology (Edizione 7) Freeman 2012 1464102325
Teoria Alberts et al. The Cell (Edizione 5) Garland Science 2007 978-0-8153-4105-5
Teoria Geoffrey M. Cooper, Robert E. Hausman The cell: a molecular approach (Edizione 6) Sinauer Associates, Inc 2013 978-1-60535-155-1

Teaching materials

Type D and Type F activities

Modules not yet included

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details.

Graduation

List of theses and work experience proposals

theses proposals Research area
Studio delle proprietà di luminescenza di lantanidi in matrici proteiche Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry - Colloid chemistry
Multifunctional organic-inorganic hybrid nanomaterials for applications in Biotechnology and Green Chemistry Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry - New materials: oxides, alloys, composite, organic-inorganic hybrid, nanoparticles
Stampa 3D di nanocompositi polimerici luminescenti per applicazioni in Nanomedicina Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry - New materials: oxides, alloys, composite, organic-inorganic hybrid, nanoparticles
Biologia e proprietà immunologiche delle cellule staminali fetali Various topics
Dinamiche della metilazione del DNA e loro contributo durante il processo di maturazione della bacca di vite. Various topics
Risposte trascrittomiche a sollecitazioni ambientali in vite Various topics
Studio delle basi genomico-funzionali del processo di embriogenesi somatica in vite Various topics

Attendance

As stated in point 25 of the Teaching Regulations for the A.Y. 2021/2022, attendance is not mandatory. However, professors may require students to attend lectures for a minimum of hours in order to be able to take the module exam, in which case the methods that will be used to check attendance will be explained at the beginning of the module. 
Please refer to the Crisis Unit's latest updates for the mode of teaching.

Gestione carriere


Further services

I servizi e le attività di orientamento sono pensati per fornire alle future matricole gli strumenti e le informazioni che consentano loro di compiere una scelta consapevole del corso di studi universitario.