Studiare

In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.

Queste informazioni sono destinate esclusivamente agli studenti e alle studentesse già iscritti a questo corso.
Se sei un nuovo studente interessato all'immatricolazione, trovi le informazioni sul percorso di studi alla pagina del corso:

Laurea magistrale in Mathematics - Immatricolazione dal 2025/2026

Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.

CURRICULUM TIPO:

1° Anno 

InsegnamentiCreditiTAFSSD
Insegnamenti offerti ad anni alterni
Insegnamenti offerti ad anni alterni
InsegnamentiCreditiTAFSSD
Insegnamenti offerti ad anni alterni
Insegnamenti offerti ad anni alterni
Insegnamenti Crediti TAF SSD
Tra gli anni: 1°- 2°
Tra gli anni: 1°- 2°
Ulteriori competenze
4
F
-

Legenda | Tipo Attività Formativa (TAF)

TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.




S Stage e tirocini presso imprese, enti pubblici o privati, ordini professionali

Codice insegnamento

4S00263

Crediti

6

Lingua di erogazione

Italiano

Settore Scientifico Disciplinare (SSD)

MAT/09 - RICERCA OPERATIVA

Periodo

I semestre dal 3 ott 2011 al 31 gen 2012.

Obiettivi formativi

Il corso si propone di fornire agli studenti un'introduzione all'analisi convessa in spazi di dimensione finita ed infinita, e alle applicazioni a problemi di ottimizzazione (non lineari) e teoria del controllo per lo più derivanti da modelli fisici ed economici.

Programma

Richiami su topologie deboli su spazi di Banach: insiemi convessi, funzionale di Minkowski, operatori lineari e continui, topologie deboli, separazione di insiemi convessi.

Funzioni convesse: generalità, funzioni convesse semicontinue inferiormente, funzioni coniugate, sottodifferenziale nel senso dell'analisi convessa. Cenni di Calcolo delle Variazioni.

Generalizzazione della convessità: calcolo differenziale negli spazi di Hilbert e di Banach: sottodifferenziale prossimale e limiting, il teorema di densità, regola della somma e della catena, gradiente generalizzato in uno spazio di Banach.

Cenni di teoria del controllo: multifunzioni e traiettorie di inclusioni differenziali, viabilità, equilibri, invarianza, stabilizzazione, raggiungibilità, il principio del massimo di Pontryagin, condizioni necessarie per l'ottimalità.

Applicazioni a problemi di ottimizzazione derivanti da modelli fisici ed economici.

Testi di riferimento
Autore Titolo Casa editrice Anno ISBN Note
Ivar Ekeland and Roger Témam Convex Analysis and Variational Problems SIAM 1987 0-89871-450-8
F.H. Clarke, Y.S. Ledyaev, Ronald J. Stern, P.R. Wolenski Nonsmooth Analysis and Control Theory Springer-Verlag New York Inc. 1998 0387983368
Frank H. Clarke Optimization and Nonsmooth Analysis SIAM 1990 0-89871-256-4

Modalità d'esame

Scritto e orale. Verranno effettuate inoltre una prima prova parziale a metà corso e una seconda prova parziale al termine dello stesso. Gli studenti che avranno superato entrambe le prove parziali saranno esonerati dallo scritto e passeranno direttamente all'orale.

Le/gli studentesse/studenti con disabilità o disturbi specifici di apprendimento (DSA), che intendano richiedere l'adattamento della prova d'esame, devono seguire le indicazioni riportate QUI