Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
I sem. Oct 1, 2014 Jan 30, 2015
II sem. Mar 2, 2015 Jun 12, 2015
Exam sessions
Session From To
Sessione straordinaria appelli d'esame Feb 2, 2015 Feb 27, 2015
Sessione estiva appelli d'esame Jun 15, 2015 Jul 31, 2015
Sessione autunnale appelli d'esame Sep 1, 2015 Sep 30, 2015
Degree sessions
Session From To
Sessione autunnale appello di laurea 2014 Oct 23, 2014 Oct 23, 2014
Sessione invernale appello di laurea 2015 Mar 17, 2015 Mar 17, 2015
Sessione estiva appello di laurea 2015 Jul 21, 2015 Jul 21, 2015
Sessione autunnale appello di laurea 2015 Oct 12, 2015 Oct 12, 2015
Sessione invernale appello di laurea 2016 Mar 15, 2016 Mar 15, 2016
Holidays
Period From To
Vacanze di Natale Dec 22, 2014 Jan 6, 2015
Vacanze di Pasqua Apr 2, 2015 Apr 7, 2015
Ricorrenza del Santo Patrono May 21, 2015 May 21, 2015
Vacanze estive Aug 10, 2015 Aug 16, 2015

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrollment FAQs

Academic staff

A B C D F G L M O R S Z

Angeleri Lidia

symbol email lidia.angeleri@univr.it symbol phone-number +39 045 802 7911

Baldo Sisto

symbol email sisto.baldo@univr.it symbol phone-number +39 045 802 7935

Bos Leonard Peter

symbol email leonardpeter.bos@univr.it

Caliari Marco

symbol email marco.caliari@univr.it symbol phone-number +39 045 802 7904

Daldosso Nicola

symbol email nicola.daldosso@univr.it symbol phone-number +39 045 8027076 - 7828 (laboratorio)

Di Persio Luca

symbol email luca.dipersio@univr.it symbol phone-number +39 045 802 7968

Ferro Ruggero

symbol email ruggero.ferro@univr.it symbol phone-number +39 045 802 7909

Gregorio Enrico

symbol email Enrico.Gregorio@univr.it symbol phone-number +39 045 802 7937

Mantese Francesca

symbol email francesca.mantese@univr.it symbol phone-number +39 045 802 7978

Marigonda Antonio

symbol email antonio.marigonda@univr.it symbol phone-number +39 045 802 7809

Monti Francesca

symbol email francesca.monti@univr.it symbol phone-number +39 045 802 7910

Morato Laura Maria

symbol email laura.morato@univr.it symbol phone-number +39 045 802 7904

Orlandi Giandomenico

symbol email giandomenico.orlandi at univr.it symbol phone-number +39 045 802 7986

Rizzi Romeo

symbol email romeo.rizzi@univr.it symbol phone-number +39 045 802 7088

Schuster Peter Michael

symbol email peter.schuster@univr.it symbol phone-number +39 045 802 7029

Solitro Ugo

symbol email ugo.solitro@univr.it symbol phone-number +39 045 802 7977
Marco Squassina,  January 5, 2014

Squassina Marco

symbol email marco.squassina@univr.it symbol phone-number +39 045 802 7913

Zampieri Gaetano

symbol email gaetano.zampieri@univr.it symbol phone-number +39 045 802 7979

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.

CURRICULUM TIPO:

2° Year   activated in the A.Y. 2015/2016

ModulesCreditsTAFSSD
6
B
MAT/05
activated in the A.Y. 2015/2016
ModulesCreditsTAFSSD
6
B
MAT/05
Modules Credits TAF SSD
Between the years: 1°- 2°
A course to be chosen among the following
Between the years: 1°- 2°
Between the years: 1°- 2°
Other activitites
4
F
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S001101

Credits

12

Coordinator

Sisto Baldo

Language

English en

Scientific Disciplinary Sector (SSD)

MAT/05 - MATHEMATICAL ANALYSIS

The teaching is organized as follows:

Parte 1

Credits

6

Period

I sem.

Academic staff

Sisto Baldo

Parte 3

Credits

3

Period

I sem.

Academic staff

Marco Squassina

Parte 2

Credits

3

Period

I sem.

Academic staff

Giandomenico Orlandi

Learning outcomes

The course introduces to the basic concepts of measure theory (Lebesgue and abstract) and of modern functional analysis, with particular emphasis on Banach and Hilbert spaces. Whenever possible, abstract results will be presented together with applications to concrete function spaces and problems: the aim is to show how these techniques are useful in the different fields of pure and applied mathematics.

Program

Lebesgue measure and integral. Outer measures, abstract integration, integral convergence theorems. Banach spaces and their duals. Theorems of Hahn-Banach, of the closed graph, of the open mapping, of Banach-Steinhaus. Reflexive spaces. Spaces of sequences. Lp and W1,p spaces: functional properties and density/compactness results. Hilbert spaces, Hilbert bases, abstract Fourier series. Weak convergence and weak compactness. Spectral theory for self adjoint, compact operators. Basic notions from the theory of distributions.

Bibliography

Reference texts
Activity Author Title Publishing house Year ISBN Notes
Parte 1 Brezis, Haïm Analisi funzionale. Teoria e applicazioni Liguori 1986 8820715015
Parte 1 A.N. Kolmogorov, S.V. Fomin Elementi di teoria delle funzioni e di analisi funzionale (Edizione 4) MIR 1980 xxxx
Parte 1 Kolmogorov, A.; Fomin, S. Elements of the Theory of Functions and Functional Analysis Dover Publications 1999 0486406830
Parte 1 Haim Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations Springer 2011 0387709134

Examination Methods

Written and oral test.

Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE

Teaching materials e documents

Type D and Type F activities

Modules not yet included

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details: only in this way will you be able to receive notification of all the notices from your teachers and your secretariat via email and also via the Univr app.

Alternative learning activities

In order to make the study path more flexible, it is possible to request the substitution of some modules with others of the same course of study in Mathematics at the University of Verona (if the educational objectives of the modules to be substituted have already been achieved in the previous career), or with others of the course of study in Mathematics at the University of Trento.

Documents


Attendance modes and venues

As stated in the Teaching Regulations , except for specific practical or lab activities, attendance is not mandatory. Regarding these activities, please see the web page of each module for information on the number of hours that must be attended on-site.

Part-time enrolment is permitted. Find out more on the Part-time enrolment possibilities page.

The course's teaching activities take place in the Science and Engineering area, which consists of the buildings of Ca‘ Vignal 1, Ca’ Vignal 2, Ca' Vignal 3 and Piramide, located in the Borgo Roma campus. 
Lectures are held in the classrooms of Ca‘ Vignal 1, Ca’ Vignal 2 and Ca' Vignal 3, while practical exercises take place in the teaching laboratories dedicated to the various activities.


Career management


Student login and resources


Graduation

Deadlines and administrative fulfilments

For deadlines, administrative fulfilments and notices on graduation sessions, please refer to the Graduation Sessions - Science and Engineering service.

Need to activate a thesis internship

For thesis-related internships, it is not always necessary to activate an internship through the Internship Office. For further information, please consult the dedicated document, which can be found in the 'Documents' section of the Internships and work orientation - Science e Engineering service.

Final examination regulations

Upon completion of the Master’s degree dissertation students are awarded 32 CFU. The final examination consists of a written dissertation on a specific topic agreed with a supervising professor and presented to a commission (Dissertation Committee).

The dissertation can be high-level theoretical or experimental (in the latter case, it may focus on either basic or applied research), it can deal with a theoretical topic or propose the resolution of a specific problem, or description of a work project, and may be carried out at universities, research institutions, schools, laboratories and companies in the framework of internships, traineeships, study stays in Italy and abroad. The dissertation must be original and written by the student under the guidance of a Supervisor. At the request of the student, the dissertation may be written and presented in Italian.

Professors belonging to the Mathematics Teaching Committee, the Department of Computer Science, and any associated departments may be appointed as Supervisors, as well as any professors from the University of Verona whose area of interest (SSD - Scientific-disciplinary Sector) is included in the teaching regulations of the degree programme.

Students may take the final exam only if meeting all requirements set by the School of Sciences and Engineering.

The Master's degree in Mathematics is obtained by successfully passing the final examination and thus earning the 120 CFU included in the study plan.

The material submitted by the student for the final examination will be examined by the Dissertation Committee, which comprises three professors, possibly including the Supervisor, and appointed by the President of the Teaching Committee. The final examination will be assessed based on the following criteria: the student’s performance during the entire study programme, the knowledge acquired during the dissertation work, their understanding of the topic and autonomy of judgment, their ability to apply such knowledge, and communicate effectively and fully all the outcomes of the work and the main results obtained.

The final examination and the degree ceremony will be carried out, in one of the four graduation sessions throughout the academic year, by the Final Examination Committee appointed by the President of the Teaching Committee, and made up of a president and at least four members chosen from among the professors of the University.

For further information, please refer to the Final examination regulations.

Documents

Title Info File
File pdf 1. Come scrivere una tesi pdf, it, 31 KB, 02/11/22
File pdf 2. How to write a thesis pdf, en, 31 KB, 02/11/22
File pdf 5. Regolamento tesi pdf, it, 171 KB, 20/03/24

List of thesis proposals

theses proposals Research area
Controllo di sistemi multiagente Calculus of variations and optimal control; optimization - Hamilton-Jacobi theories, including dynamic programming
Controllo di sistemi multiagente Calculus of variations and optimal control; optimization - Manifolds
Controllo di sistemi multiagente Calculus of variations and optimal control; optimization - Optimality conditions
Formule di rappresentazione per gradienti generalizzati Mathematics - Analysis
Formule di rappresentazione per gradienti generalizzati Mathematics - Mathematics
Mathematics Bachelor and Master thesis titles Various topics

Erasmus+ and other experiences abroad