Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.

CURRICULUM TIPO:

1° Year 

ModulesCreditsTAFSSD

2° Year   activated in the A.Y. 2021/2022

ModulesCreditsTAFSSD
6
B
MAT/05
Final exam
32
E
-
activated in the A.Y. 2021/2022
ModulesCreditsTAFSSD
6
B
MAT/05
Final exam
32
E
-
Modules Credits TAF SSD
Between the years: 1°- 2°
1 module between the following
Between the years: 1°- 2°
1 module between the following 
Between the years: 1°- 2°
Between the years: 1°- 2°
Other activities
4
F
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S008268

Coordinator

Luca Di Persio

Credits

6

Language

English en

Scientific Disciplinary Sector (SSD)

MAT/06 - PROBABILITY AND STATISTICS

Period

II semestre dal Mar 1, 2021 al Jun 11, 2021.

Learning outcomes

This course will provide an introduction to the theory of Stochastic Differential Equations (SDEs), mainly based on the Brownian motion type of noise. The purpose of this course is to introduce and analyse probability models that capture the stochastic features of the system under study to predict the short and long term effects that this randomness will have on the systems under consideration. The study of probability models for continuous-time stochastic processes involves a broad range of mathematical and computational tools. This course will strike a balance between the mathematics and the applications. The main applications will be mathematical finance, biology and populations evolution, also with respect to their descriptions in terms of the associated SDEs. Topics include: construction of Brownian motion; martingales in continuous time; stochastic integral; Ito calculus; stochastic differential equations; Girsanov theorem; martingale representation; the Feynman-Kac formula and Lévy processes.

Program

* Probability essential recalls

* SP: definitions/main properties recall ; Martingales ; Option Sampling Theorem ; Quadratic Variation ;
* Stochastic processes at discrete time: recalls and emphasis on random walk (starting from the binomial model, also in more than 1 dimension);
* Different constructions of the Brownian motion: Kolmogorov Consistency Theorem / Kolmogorov-
Cénstor Th.eorem;
* Properties of the Brownian motion
* Derivation/construction of the Stochastic Integral(s) notion(s)
* Ito-Doeoblin rule: Levy's Criteria / Martingale Representation
* Stratonovich approach / Ito representation Theorem (applications/examples)
* Markov processes and relation(s) with the Brownian motion sp [further Bm's properties]
* Girsanov formula / Cameron-Martin (Girsanov) Theorem and Exponential Martingales
* Construction and rigorous derivation of Stochastic Differential Equations
* Strong solutions / Gronwall Lemma / Weak solutions (for SDEs)
* Diffusions / Semi-group approach / Markov property(ies)
* Dynkin's formula / Kolmogorov equation(s) / Feynman-Kac theorem
* Interplay between PDEs and SPDEs (via F-K theorem)
* SDEs application w.r.t. the Financial framework

Reference texts
Author Title Publishing house Year ISBN Notes
I. Karatzas and S. Shreve Brownian motion and stochastic calculus  
L. Rogers and D. Williams Diffusions, Markov Processes and Martingales (Vol 2.)  
Hoel, P. G., Port, S. C. and Stone, C. J. Introduction to Stochastic Processes Houghton Mifflin, Boston 1972
S. E. Shreve Stochastic Calculus for Finance II: Continuous-Time Models Springer, New York 2004
B. Øksendal Stochastic Differential Equations  
P. Protter Stochastic integration and differential equations  

Examination Methods

Oral exam with written exercise:
the exam is based on open questions and/or on the presentation of a project agreed with the course professor and or on the resolution of written exercises to be solved during the test itself. Questions, open-ended and exercises, aim at verify both the knowledge about arguments developed within the course, the solution of concrete problems belonging to Mathematical Finance, and to the acquired acquaintance of associated tools of stochastic analysis.

Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE