Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Academic calendar
The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.
Course calendar
The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..
Period | From | To |
---|---|---|
I sem. | Oct 2, 2017 | Jan 31, 2018 |
II sem. | Mar 1, 2018 | Jun 15, 2018 |
Session | From | To |
---|---|---|
Sessione invernale d'esami | Feb 1, 2018 | Feb 28, 2018 |
Sessione estiva d'esame | Jun 18, 2018 | Jul 31, 2018 |
Sessione autunnale d'esame | Sep 3, 2018 | Sep 28, 2018 |
Session | From | To |
---|---|---|
Sessione di laurea estiva | Jul 23, 2018 | Jul 23, 2018 |
Sessione di laurea autunnale | Oct 17, 2018 | Oct 17, 2018 |
Sessione di laurea invernale | Mar 22, 2019 | Mar 22, 2019 |
Period | From | To |
---|---|---|
Christmas break | Dec 22, 2017 | Jan 7, 2018 |
Easter break | Mar 30, 2018 | Apr 3, 2018 |
Patron Saint Day | May 21, 2018 | May 21, 2018 |
VACANZE ESTIVE | Aug 6, 2018 | Aug 19, 2018 |
Exam calendar
Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.
Academic staff
Study Plan
The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.
1° Year
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
Computational algebra (2017/2018)
Teaching code
4S001098
Academic staff
Coordinator
Credits
6
Language
English
Scientific Disciplinary Sector (SSD)
MAT/02 - ALGEBRA
Period
II sem. dal Mar 1, 2018 al Jun 15, 2018.
Learning outcomes
The course provides an introduction to coding theory, presenting the main notions and techniques for error detection and correction. In particular, linear and cyclic codes will be studied. The topics will be presented both from a teorical and computational point of view. In the first part of the course, basic concept from algebra will be reviewd, and finite fields will be deeply studied.
At the end of the course the students will know the main terminology and main results in coding theory, the more relevant linear and cyclic codes, their decoding algorithms.
They will be able to produce rigorous arguments and proofs on these topics and they will be able to read articles and advanced texts.
Program
The course consists of lectures. Notes and homework will be provided.
-Review on groups, rings, fields.
-finite fields
- Polynomials and the Euclidean Algorithm
- Primitive elements
- Constructing finite fields
-Cyclotomic cosets and minimalpolynomials
-Basic concepts of linear codes
- Linear codes, generator and parity check matrices
- Dual codes
- Weights and distances
- New codes from old
- Permutation equivalent codes
-More general equivalence of codes
-Hamming codes
-Encoding, decoding, and Shannon’s Theorem
- Encoding
- Decoding and Shannon’s Theorem
- Sphere Packing Bound, covering radius, and perfect codes
-Basic theory of cyclic codes
- Idempotents and multipliers
- Zeros of a cyclic code
- Minimum distance of cyclic codes
- BCH codes 168
- Reed–Solomon codes
- Decoding BCH codes
- The Peterson–Gorenstein–Zierler Decoding Algorithm
- The Berlekamp–Massey Decoding Algorithm
- The Sugiyama Decoding Algorithm
- Coding for the compact disc
- Codes from algebraic geometry
- Generalized Reed–Solomon codes revisited
- Classical Goppa codes
- The Gilbert–Varshamov Bound revisited
- Goppa codes meet the Gilbert–Varshamov Bound
Author | Title | Publishing house | Year | ISBN | Notes |
---|---|---|---|---|---|
W. C. Huffman, V. Pless | Fundamentals of Error-Correcting Codes | Cambridge University Press | 2010 | 0521131707 | |
Lint, J. H. van | Introduction to Coding Theory (Edizione 2) | Springer-Verlag Berlin Heidelberg | 1992 | 978-3-662-00174-5 |
Examination Methods
To succes in the exam, students must show that:
- they know and understand the fundamental concepts of coding theory
- they have abilities in solving problems in coding theory, both from the abstact and the computational point of view
- they support their argumentation with mathematical rigor.
The exam consists of a written test in which the student will have to solve exercises and answer to question on the topics presented during the lectures. The mark obtained in the written examination can be improved by the mark obtained for the homework and/or by an optional oral examination. Only students who have passed the written exam will be admitted to the oral examination. If positive, the mark obtained in the written test will be valid until the last session of the present academic year (February 2019).
Type D and Type F activities
Modules not yet included
Career prospects
Module/Programme news
News for students
There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details: only in this way will you be able to receive notification of all the notices from your teachers and your secretariat via email and also via the Univr app.
Alternative learning activities
In order to make the study path more flexible, it is possible to request the substitution of some modules with others of the same course of study in Mathematics at the University of Verona (if the educational objectives of the modules to be substituted have already been achieved in the previous career), or with others of the course of study in Mathematics at the University of Trento.Documents
Title | Info File |
---|---|
1. Convenzione | Learning Agreement UNITN - UNIVR | pdf, it, 167 KB, 27/08/21 |
2. Sostituzione insegnamenti a UNITN - Courses replacement at UNITN | pdf, it, 97 KB, 29/07/24 |
3. Sostituzione insegnamenti a UNIVR - Courses replacement at UNIVR | pdf, it, 113 KB, 30/08/21 |
Attendance modes and venues
As stated in the Teaching Regulations , except for specific practical or lab activities, attendance is not mandatory. Regarding these activities, please see the web page of each module for information on the number of hours that must be attended on-site.
Part-time enrolment is permitted. Find out more on the Part-time enrolment possibilities page.
The course's teaching activities take place in the Science and Engineering area, which consists of the buildings of Ca‘ Vignal 1, Ca’ Vignal 2, Ca' Vignal 3 and Piramide, located in the Borgo Roma campus.
Lectures are held in the classrooms of Ca‘ Vignal 1, Ca’ Vignal 2 and Ca' Vignal 3, while practical exercises take place in the teaching laboratories dedicated to the various activities.
Career management
Student login and resources
Graduation
Deadlines and administrative fulfilments
For deadlines, administrative fulfilments and notices on graduation sessions, please refer to the Graduation Sessions - Science and Engineering service.
Need to activate a thesis internship
For thesis-related internships, it is not always necessary to activate an internship through the Internship Office. For further information, please consult the dedicated document, which can be found in the 'Documents' section of the Internships and work orientation - Science e Engineering service.
Final examination regulations
Upon completion of the Master’s degree dissertation students are awarded 32 CFU. The final examination consists of a written dissertation on a specific topic agreed with a supervising professor and presented to a commission (Dissertation Committee).
The dissertation can be high-level theoretical or experimental (in the latter case, it may focus on either basic or applied research), it can deal with a theoretical topic or propose the resolution of a specific problem, or description of a work project, and may be carried out at universities, research institutions, schools, laboratories and companies in the framework of internships, traineeships, study stays in Italy and abroad. The dissertation must be original and written by the student under the guidance of a Supervisor. At the request of the student, the dissertation may be written and presented in Italian.
Professors belonging to the Mathematics Teaching Committee, the Department of Computer Science, and any associated departments may be appointed as Supervisors, as well as any professors from the University of Verona whose area of interest (SSD - Scientific-disciplinary Sector) is included in the teaching regulations of the degree programme.
Students may take the final exam only if meeting all requirements set by the School of Sciences and Engineering.
The Master's degree in Mathematics is obtained by successfully passing the final examination and thus earning the 120 CFU included in the study plan.
The material submitted by the student for the final examination will be examined by the Dissertation Committee, which comprises three professors, possibly including the Supervisor, and appointed by the President of the Teaching Committee. The final examination will be assessed based on the following criteria: the student’s performance during the entire study programme, the knowledge acquired during the dissertation work, their understanding of the topic and autonomy of judgment, their ability to apply such knowledge, and communicate effectively and fully all the outcomes of the work and the main results obtained.
The final examination and the degree ceremony will be carried out, in one of the four graduation sessions throughout the academic year, by the Final Examination Committee appointed by the President of the Teaching Committee, and made up of a president and at least four members chosen from among the professors of the University.
For further information, please refer to the Final examination regulations.
Documents
Title | Info File |
---|---|
1. Come scrivere una tesi | pdf, it, 31 KB, 02/11/22 |
2. How to write a thesis | pdf, en, 31 KB, 02/11/22 |
5. Regolamento tesi | pdf, it, 171 KB, 20/03/24 |
List of thesis proposals
theses proposals | Research area |
---|---|
Controllo di sistemi multiagente | Calculus of variations and optimal control; optimization - Hamilton-Jacobi theories, including dynamic programming |
Controllo di sistemi multiagente | Calculus of variations and optimal control; optimization - Manifolds |
Controllo di sistemi multiagente | Calculus of variations and optimal control; optimization - Optimality conditions |
Formule di rappresentazione per gradienti generalizzati | Mathematics - Analysis |
Formule di rappresentazione per gradienti generalizzati | Mathematics - Mathematics |
Mathematics Bachelor and Master thesis titles | Various topics |