Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

A.A. 2020/2021

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
I semestre Oct 1, 2020 Jan 29, 2021
II semestre Mar 1, 2021 Jun 11, 2021
Exam sessions
Session From To
Sessione invernale d'esame Feb 1, 2021 Feb 26, 2021
Sessione estiva d'esame Jun 14, 2021 Jul 30, 2021
Sessione autunnale d'esame Sep 1, 2021 Sep 30, 2021
Degree sessions
Session From To
Sessione Estiva Jul 15, 2021 Jul 15, 2021
Sessione Autunnale Oct 15, 2021 Oct 15, 2021
Sessione Invernale Mar 15, 2022 Mar 15, 2022
Holidays
Period From To
Festa dell'Immacolata Dec 8, 2020 Dec 8, 2020
Vacanze Natalizie Dec 24, 2020 Jan 3, 2021
Epifania Jan 6, 2021 Jan 6, 2021
Vacanze Pasquali Apr 2, 2021 Apr 5, 2021
Santo Patrono May 21, 2021 May 21, 2021
Festa della Repubblica Jun 2, 2021 Jun 2, 2021

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrolment FAQs

Academic staff

B C D F G M O P R S V

Baruffi Maria Caterina

mariacaterina.baruffi@univr.it

Belussi Alberto

alberto.belussi@univr.it +39 045 802 7980

Bombieri Nicola

nicola.bombieri@univr.it +39 045 802 7094

Bonacina Maria Paola

mariapaola.bonacina@univr.it +39 045 802 7046

Busato Federico

federico.busato@univr.it

Calanca Andrea

andrea.calanca@univr.it +39 045 802 7847

Carra Damiano

damiano.carra@univr.it +39 045 802 7059

Castellani Umberto

umberto.castellani@univr.it +39 045 802 7988

Ceccato Mariano

mariano.ceccato@univr.it

Cicalese Ferdinando

ferdinando.cicalese@univr.it +39 045 802 7969

Cristani Matteo

matteo.cristani@univr.it 045 802 7983

Cristani Marco

marco.cristani@univr.it +39 045 802 7841

Cubico Serena

serena.cubico@univr.it 045 802 8132

Dalla Preda Mila

mila.dallapreda@univr.it

Di Pierro Alessandra

alessandra.dipierro@univr.it +39 045 802 7971

Farinelli Alessandro

alessandro.farinelli@univr.it +39 045 802 7842

Favretto Giuseppe

giuseppe.favretto@univr.it +39 045 802 8749 - 8748

Fiorini Paolo

paolo.fiorini@univr.it 045 802 7963

Franco Giuditta

giuditta.franco@univr.it +39 045 802 7045

Fummi Franco

franco.fummi@univr.it 045 802 7994

Giachetti Andrea

andrea.giachetti@univr.it +39 045 8027998

Giacobazzi Roberto

roberto.giacobazzi@univr.it +39 045 802 7995

Maris Bogdan Mihai

bogdan.maris@univr.it +39 045 802 7074

Masini Andrea

andrea.masini@univr.it 045 802 7922

Mastroeni Isabella

isabella.mastroeni@univr.it +39 045 802 7089

Menegaz Gloria

gloria.menegaz@univr.it +39 045 802 7024

Merro Massimo

massimo.merro@univr.it 045 802 7992

Muradore Riccardo

riccardo.muradore@univr.it +39 045 802 7835

Oliboni Barbara

barbara.oliboni@univr.it +39 045 802 7077

Paci Federica Maria Francesca

federicamariafrancesca.paci@univr.it +39 045 802 7909

Posenato Roberto

roberto.posenato@univr.it +39 045 802 7967

Pravadelli Graziano

graziano.pravadelli@univr.it +39 045 802 7081

Rizzi Romeo

romeo.rizzi@univr.it +39 045 8027088

Romeo Alessandro

alessandro.romeo@univr.it +39 045 802 7974-7936; Lab: +39 045 802 7808

Sala Pietro

pietro.sala@univr.it 0458027850

Segala Roberto

roberto.segala@univr.it 045 802 7997

Spoto Nicola Fausto

fausto.spoto@univr.it +39 045 8027940

Villa Tiziano

tiziano.villa@univr.it +39 045 802 7034

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

CURRICULUM TIPO:
ModulesCreditsTAFSSD
Final exam
24
E
-

1° Year

2° Year

ModulesCreditsTAFSSD
Final exam
24
E
-
Modules Credits TAF SSD
Between the years: 1°- 2°
Between the years: 1°- 2°
Between the years: 1°- 2°2 modules among the following
6
B
(INF/01)
6
B
(INF/01)
6
B
(INF/01)
6
B
(INF/01)
6
B
(INF/01)
6
B
(INF/01)
Between the years: 1°- 2°3 modules among the following
6
C
(INF/01)
6
C
(INF/01)
6
C
(INF/01)
6
C
(INF/01)
6
C
(INF/01)
6
C
(SECS-P/10)
6
C
(INF/01)
Between the years: 1°- 2°
English language B2 level
3
F
-
Between the years: 1°- 2°
Between the years: 1°- 2°
Other activities
3
F
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




SPlacements in companies, public or private institutions and professional associations

Teaching code

4S008896

Coordinatore

Romeo Rizzi

Credits

12

Scientific Disciplinary Sector (SSD)

ING-INF/05 - INFORMATION PROCESSING SYSTEMS

Language

Italian

Period

II semestre dal Mar 1, 2021 al Jun 11, 2021.

Learning outcomes

The overall targets of the course is to expose some aspects of the deep and important dialectic exchange between the search for algorithmic solutions and the study of the complexity of problems. Algorithms are the backbone and the substance of information technologies, but at the same time their study goes beyond the "mere" computer science and is pervasive to all the disciplines that are problem-bearers. The design of an algorithm starts from the study of the structure of the problem to be solved and it usually represents the highest achievement of this process. The study of algorithms requires and offers methodologies and techniques of problem solving, logical and mathematical skills. The course therefore aims to provide students with fundamental skills and methodologies for the analysis of problems and the design of the algorithms for solving them. Particular emphasis is given to the efficiency of the algorithms themselves, and the theory of computational complexity plays a profound methodological role in the analysis of problems. With reference to the overall didactic aims of the Master program, the course leads students to deepen and expand the three-year training in the field of analysis and evaluation of problems, algorithms, and computational models, providing a wealth of advanced tools to address non-trivial problems in different IT fields. The students will acquire logical-mathematical skills, techniques, experience and methodologies useful in the analysis of algorithmic problems, from detecting their structure and analyzing their computational complexity to designing efficient algorithms, and then planning and conducting their implementation. Besides that, The course provides the foundations of computational complexity theory, focussing on: the theory of NP-completeness; approximation algorithms and basic approaches for the analysis of the approximation guarantee of algorithms for hard problems; and parameterized approaches to hard problems. The student will apply the main algorithmic techniques: recursion, divide and conquer, dynamic programming, some data structures, invariants and monovariants. The student will develop sensitivity about which problems can be solved efficiently and with which techniques, acquiring also dialectical tools to place the complexity of an algorithmic problem and identify promising approaches for the same, looking at the problem to grasp its structure. She will learn to produce, discuss, evaluate, and validate conjectures, and also independently tackle the complete path from the analysis of the problem, to the design of a resolver algorithm, to the coding and experimentation of the same, even in research contexts either in the private sector or at research institutions. Based on the basic notions acquired of computational complexity, the students will be able to employ reductions, standard techniques in complexity theory, to analyze the structural properties of computational problems and identify possible alternative approaches (approximation, parameterization) in the absence of (provably) efficient solutions After attending the course the students will be able to: classify intractable computational problems; understand and verify a formal proof; read and understand a scientific article where a new algorithm is presented together with the analysis of its computational complexity.

Program

The Yin and the Yang of problem solving are the general methods for the solutions of instances of the problem (the Algorithms) on one side, and a detached aesthetic eye on the richness of the problem (Complexity) on the other. Two passionate enthusiasts will guide you in the exploration of these two synergistic arts with the hope that in you they might merge into just one.

ALGORITHMS SIDE:

1. The workflow of problem solving: analysis and comprehension of the problem, conception of an algorithmic solution, design of an efficient algorithm, planning the implementation, conducting the implementation, testing and debugging.

2. Methodology in analyzing a problem:
The study of special cases. Particularization and generalization.
Building a dialog with the problem. Conjectures. Simplicity assumptions.
Solving a problem by reducing it to another. Reductions among problems to organize them into classes. Reducing problems to isolate the most fundamental questions. The role of complexity theory in classifying problems into classes. The role of complexity theory in analyzing problems. Counterexamples and NP-hardness proofs. Good conjectures and good characterizations. The belief can make conjectures true. Decomposing problems and inductive thinking.

3. Algorithm design general techniques.
Recursion. Divide et impera. Recursion with memoization. Dynamic programming (DP). Greedy.
DP on sequences. DP on DAGs. More in depth: good characterization of DAGs and scheduling, composing partial orders into new ones.
DP on trees. More in depth: adoption of the children one by one; advantages of an edge-centric vision over the node-centric one.
The asymptotic eye on worst case performance guides the design of algorithms:
the binary search example; negligible improvements; amortized analysis.
Some data structures: binary heaps; prefix-sums; Fenwick trees; range trees.

4. Algorithms on graphs and digraphs.
Bipartite graphs: recognition algorithms and good characterizations.
Eulerian graphs: recognition algorithms and good characterizations.
Shortest paths. Minimum spanning trees.
Maximum flows and minimum cuts.
Bipartite matchings and node covers.
The kernel of a DAG. Progressively finite games. Sums of games.

5. General hints on implementing, coding, testing and debugging.
Plan your implementation. Anticipate the important decisions, and realize where the obscure points are. Try to go round the most painful issues you foresee. Code step by step. Verify step by step. Use the assert. Testing and debugging techniques. Self-certifying algorithms.


COMPLEXITY SIDE:

Relationships among computational problems. Polynomial reductions of one problem into another. The classes P, NP, co-NP. Notion of completeness. Proofs od NP-completeness: Cook's theorem; proofs of completeness using appropriate reductions. Search and Decision Problems. Self-Reducibility of NP-complete problems and existence of non-selfreducible problems.
Space Complexity. Models and fundamental difference between the use of time resource and the space resource. Completeness for space complexity classes. The classes PSPACE and NPSPACE. Examples of reductions to prove PSPACE-completeness.

Introduction to the approximation algorithms for optimisation problems. Examples of approximation algorithms. Classification of problems with respect to their approximabuility. The classes APX, PTAS, FPTAS. Notion of inapproximability; the gap technique to prove inapproximability results; examples of approximation preserving reductions.

Examples of simple randomised algorithms in solving hard problems. . Examples of parameterized approaches to solve hard problems.

Bibliografia

Reference texts
Author Title Publishing house Year ISBN Notes
J. Kleinberg, É. Tardos Algorithm Design (Edizione 1) Addison Wesley 2006 978-0321295354
Ingo Wegener Complexity Theory Springer 2005
Garey, M. R. and Johnson, D. S. Computers intractability: a guide to the theory of NP-completeness Freeman 1979 0-7167-1045-5
Michael Sipser Introduction to the Theory of Computation PWS 1997 053494728X
T. Cormen, C. Leiserson, R. Rivest, C. Stein Introduzione agli Algoritmi e Strutture Dati (Edizione 2) McGraw-Hill 2005 88-386-6251-7
Cristopher Moore, Stephan Mertens The Nature of Computation Oxford 2011

Examination Methods

The exam consists of a written test and a programming test, and the final grade is determined by the sum of the points in both tests. Both tests will include both topics of Algorithms and Complexity to verify that the student has acquired competence in both subjects and can exploit their complementarity.

Examples and additional information on the lab test can be found at:

https://rizzi.olinfo.it/algo-simula-prove
https://github.com/romeorizzi/esami-algo-public

Examples of the type of exercises included in the written test can be found at the repo:

https://github.com/romeorizzi/prove_scritte_AlgoComp

Type D and Type F activities

Le attività formative in ambito D o F comprendono gli insegnamenti impartiti presso l'Università di Verona o periodi di stage/tirocinio professionale.
Nella scelta delle attività di tipo D, gli studenti dovranno tener presente che in sede di approvazione si terrà conto della coerenza delle loro scelte con il progetto formativo del loro piano di studio e dell'adeguatezza delle motivazioni eventualmente fornite.

 

I semestre From 10/1/20 To 1/29/21
years Modules TAF Teacher
1° 2° Matlab-Simulink programming D Bogdan Mihai Maris (Coordinatore)
1° 2° Programming Challanges D Romeo Rizzi (Coordinatore)
II semestre From 3/1/21 To 6/11/21
years Modules TAF Teacher
1° 2° Introduction to 3D printing D Franco Fummi (Coordinatore)
1° 2° Python programming language D Vittoria Cozza (Coordinatore)
1° 2° HW components design on FPGA D Franco Fummi (Coordinatore)
1° 2° Rapid prototyping on Arduino D Franco Fummi (Coordinatore)
1° 2° Protection of intangible assets (SW and invention)between industrial law and copyright D Roberto Giacobazzi (Coordinatore)
List of courses with unassigned period
years Modules TAF Teacher
1° 2° The fashion lab (1 ECTS) D Maria Caterina Baruffi (Coordinatore)
1° 2° The course provides an introduction to blockchain technology. It focuses on the technology behind Bitcoin, Ethereum, Tendermint and Hotmoka. D Nicola Fausto Spoto (Coordinatore)

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details.

Gestione carriere


Graduation

List of theses and work experience proposals

theses proposals Research area
Analisi ed identificazione automatica del tono/volume della voce AI, Robotics & Automatic Control - AI, Robotics & Automatic Control
Analisi e percezione dei segnali biometrici per l'interazione con robot AI, Robotics & Automatic Control - AI, Robotics & Automatic Control
Integrazione del simulatore del robot Nao con Oculus Rift AI, Robotics & Automatic Control - AI, Robotics & Automatic Control
BS or MS theses in automated reasoning Computing Methodologies - ARTIFICIAL INTELLIGENCE
Sviluppo sistemi di scansione 3D Computing Methodologies - COMPUTER GRAPHICS
Sviluppo sistemi di scansione 3D Computing Methodologies - IMAGE PROCESSING AND COMPUTER VISION
Dati geografici Information Systems - INFORMATION SYSTEMS APPLICATIONS
Analisi ed identificazione automatica del tono/volume della voce Robotics - Robotics
Analisi e percezione dei segnali biometrici per l'interazione con robot Robotics - Robotics
Integrazione del simulatore del robot Nao con Oculus Rift Robotics - Robotics
BS or MS theses in automated reasoning Theory of computation - Logic
BS or MS theses in automated reasoning Theory of computation - Semantics and reasoning
Proposte di tesi/collaborazione/stage in Intelligenza Artificiale Applicata Various topics
Proposte di Tesi/Stage/Progetto nell'ambito delle basi di dati/sistemi informativi Various topics

Attendance

As stated in point 25 of the Teaching Regulations for the A.Y. 2021/2022, attendance at the course of study is not mandatory.
Please refer to the Crisis Unit's latest updates for the mode of teaching.

Further services

I servizi e le attività di orientamento sono pensati per fornire alle future matricole gli strumenti e le informazioni che consentano loro di compiere una scelta consapevole del corso di studi universitario.