Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Academic calendar
The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.
Course calendar
The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..
Period | From | To |
---|---|---|
I - II semestre | Oct 2, 2017 | Jun 15, 2018 |
I sem. | Oct 2, 2017 | Jan 31, 2018 |
II sem. | Mar 1, 2018 | Jun 15, 2018 |
Session | From | To |
---|---|---|
Sessione invernale d'esami | Feb 1, 2018 | Feb 28, 2018 |
Sessione estiva d'esame | Jun 18, 2018 | Jul 31, 2018 |
Sessione autunnale d'esame | Sep 3, 2018 | Sep 28, 2018 |
Session | From | To |
---|---|---|
Sessione di laurea estiva | Jul 23, 2018 | Jul 23, 2018 |
Sessione di laurea autunnale | Oct 17, 2018 | Oct 17, 2018 |
Sessione autunnale di laurea | Nov 23, 2018 | Nov 23, 2018 |
Sessione di laurea invernale | Mar 22, 2019 | Mar 22, 2019 |
Period | From | To |
---|---|---|
Christmas break | Dec 22, 2017 | Jan 7, 2018 |
Easter break | Mar 30, 2018 | Apr 3, 2018 |
Patron Saint Day | May 21, 2018 | May 21, 2018 |
VACANZE ESTIVE | Aug 6, 2018 | Aug 19, 2018 |
Exam calendar
Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.
Academic staff

Cordoni Francesco Giuseppe
Rossi Francesco
Zini Giovanni
Study Plan
The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
1° Year
Modules | Credits | TAF | SSD |
---|
2° Year activated in the A.Y. 2018/2019
Modules | Credits | TAF | SSD |
---|
3° Year activated in the A.Y. 2019/2020
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
Mathematical analysis 1 (2017/2018)
Teaching code
4S00030
Academic staff
Coordinatore
Credits
12
Language
Italian
Scientific Disciplinary Sector (SSD)
MAT/05 - MATHEMATICAL ANALYSIS
Period
I sem. dal Oct 2, 2017 al Jan 31, 2018.
Learning outcomes
The course introduces to the basic concepts and techniques of differential and integral calculus emphasizing methodology and applications over the more formal aspects. The aim is to provide the students with basic tools for addressing scientific issues which can be formalized in the language and methods of calculus.
Program
Properties of real numbers. Sequences and series. Limits. Continuous functions. Differential and integral calculus for functions of one real variable. Elementary ordinary differential equations.
Topology of the real line.
Author | Title | Publishing house | Year | ISBN | Notes |
---|---|---|---|---|---|
M.Bramanti,C.D.Pagani,S.Salsa | Analisi Matematica 1 | Zanichelli | 2009 | 978-88-08-06485-1 | |
Giuseppe de Marco | Analisi uno. Primo corso di analisi matematica. Teoria ed esercizi | Zanichelli | 1996 | 8808243125 | |
R.A. Adams | Calcolo Differenziale 1 - Funzioni di una variabile reale | Casa Editrice Ambrosiana | |||
Adams, R. | Calcolo differenziale. [volume 1] Funzioni di una variabile reale (Edizione 3) | Ambrosiana | 2003 | 884081261X |
Examination Methods
The final exam consists of a written test followed, in case of a positive result, by an oral test. The written test consists of some exercises on the program: students are exonerated from the first part of the test if they pass a mid-term test at the beginning of december. The written test evaluates the ability of students at solving problems pertaining to the syllabus of the course, and also their skills in the analysis, synthesis and abstraction of questions stated either in the natural language or in the specific language of mathematics. The written test is graded on a scale from 0 to 30 points (best), with a pass mark of 18/30.
The oral exam will concentrate mainly but not exclusively on elementary ordinary differential equations and the topology of the real line. It aims at verifying the ability of students at constructing correct and rigorous proofs and their skills in analysis, synthesis and abstraction. The oral exam is graded on a scale from -5 to +5 point, which are added to the marks earned in the written test.
Type D and Type F activities
Modules not yet included
Career prospects
Module/Programme news
News for students
There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details: only in this way will you be able to receive notification of all the notices from your teachers and your secretariat via email and soon also via the Univr app.
Erasmus+ and other experiences abroad
Graduation
Attachments
Title | Info File |
---|---|
![]() |
31 KB, 29/07/21 |
![]() |
31 KB, 29/07/21 |
![]() |
171 KB, 17/02/22 |
List of theses and work experience proposals
theses proposals | Research area |
---|---|
Formule di rappresentazione per gradienti generalizzati | Mathematics - Analysis |
Formule di rappresentazione per gradienti generalizzati | Mathematics - Mathematics |
Proposte Tesi A. Gnoatto | Various topics |
Mathematics Bachelor and Master thesis titles | Various topics |
Stage | Research area |
---|---|
Internship proposals for students in mathematics | Various topics |
Attendance
As stated in the Teaching Regulations for the A.Y. 2022/2023, except for specific practical or lab activities, attendance is not mandatory. Regarding these activities, please see the web page of each module for information on the number of hours that must be attended on-site.
Please refer to the Crisis Unit's latest updates for the mode of teaching.