Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Academic calendar
The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.
Course calendar
The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..
Period | From | To |
---|---|---|
Primo semestre | Oct 4, 2021 | Jan 28, 2022 |
Secondo semestre | Mar 7, 2022 | Jun 10, 2022 |
Session | From | To |
---|---|---|
Sessione invernale d'esame | Jan 31, 2022 | Mar 4, 2022 |
Sessione estiva d'esame | Jun 13, 2022 | Jul 29, 2022 |
Sessione autunnale d'esame | Sep 1, 2022 | Sep 30, 2022 |
Session | From | To |
---|---|---|
Sessione estiva di laurea | Jul 21, 2022 | Jul 21, 2022 |
Sessione autunnale di laurea | Oct 13, 2022 | Oct 13, 2022 |
Sessione autunnale di laurea - dicembre | Dec 7, 2022 | Dec 7, 2022 |
Sessione invernale | Mar 16, 2023 | Mar 16, 2023 |
Period | From | To |
---|---|---|
Festa di Tutti i Santi | Nov 1, 2021 | Nov 1, 2021 |
Festa dell'Immacolata Concezione | Dec 8, 2021 | Dec 8, 2021 |
Festività natalizie | Dec 24, 2021 | Jan 2, 2022 |
VACANZE DI PASQUA | Apr 15, 2022 | Apr 19, 2022 |
FESTA DEL LAVORO | May 1, 2022 | May 1, 2022 |
Festa di San Zeno - S. Patrono di Verona | May 21, 2022 | May 21, 2022 |
Festa della Repubblica | Jun 2, 2022 | Jun 2, 2022 |
Chiusura estiva | Aug 15, 2022 | Aug 20, 2022 |
Exam calendar
Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.
Academic staff
Study Plan
The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.
1° Year
Modules | Credits | TAF | SSD |
---|
2° Year activated in the A.Y. 2022/2023
Modules | Credits | TAF | SSD |
---|
3° Year activated in the A.Y. 2023/2024
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
Geometry (2022/2023)
Teaching code
4S00247
Teacher
Coordinator
Credits
6
Language
Italian
Scientific Disciplinary Sector (SSD)
MAT/03 - GEOMETRY
Period
Semester 1 dal Oct 3, 2022 al Jan 27, 2023.
Learning objectives
The course aims to provide students with the basic concepts of the general topology and the basics of differential geometry of curves and surfaces embedded in an Euclidean space. At the end of the course, the student has a general and complete vision of topological properties in a wider context than that of real Euclidean spaces. He/She be able to recognize and compute the main geometrical characteristics of a curve and of a surface (Frenet frames, curvatures, fundamental quadratic forms ...). He/She also be able to produce rigorous arguments and proofs on these topics and he/she can read papers and advanced texts on Topology and Differential Geometry.
Prerequisites and basic notions
Linear algebra, affine and projective geometry. Calculus for functions of one or several variables.
Program
-General Topology.
Topological space, definition. Examples: trivial topology, discrete topology, discrete topology, cofinite topology. Comparison of topologies. Basis. Neighbourhoods. Closure. Contnuos applications. Homeomorphisms. Limit points and isolated points. Dense set. Topological subspace, induced topology. Product spaces.
Separation axioms. Hausdorff spaces, Normal spaces, Regular spaces.
Countability axioms. Quotient space. Open and closed applications.
Relevant examples: sphere, projective space, Moebius strip...
Compactness. Heine-Borel Theorem. Tychonoff Theorem. Bolzano-Weierstrass Theorem.
Connectivity, local connectivity. Path connectivity. Examples and counterexamples. Simply connected, homotopy and fundamental group. Jordan curve Theorem.
-Differential geometry of curves.
Curves in the plane:
Examples. Regular points and singular points. Embedding and immersion. Vector fields along a curve. Tangent vector and line. Length of an arc. Parametrization by arc-length. Inflection points. Curvature and radius of curvature. Center of curvature. Frenet-Serret formula.
Curves in the space:
Tangent line. Normal plane. Inflection points. Osculator plane. Curvatures. Principal frame. Frenet-Serret formula. Torsion. Fundamental Theorem.
-Differential geometry of surfaces.
Definitions. Differentiable atlas. Oriented atlas, Tangent plane, Normal versor.
First fundamental quadratic form: metric and area. Tangential curvature and normal curvature of a curve on a surface. Curvatures, normal sections, Meusnier Theorem. Principal curvatures, Gaussian curvature and mean curvature: Theorem Egregium. Geodetics.
Bibliography
Didactic methods
Lectures and exercise sessions.
There will also be 12 hours of tutoring that will focus in particular on the resolution of exercises.
Students will be specifically preserved in situations of travel limitation due to national provisions to combat COVID or in particular situations of fragility. In these cases, you are invited to contact the teacher directly to organize the most appropriate remedial strategies.
Learning assessment procedures
Written test (150 minutes).
The exam consists of four exercises (2 on topology, 1 on curve theory and 1 on surfaces theory) and two questions (1 on general definition / concepts and 1 with a proof of a theorem presented during the lectures).
Oral Test (Optional)
It is a discussion with the lecturer on definitions and proofs discussed during the lessons.
Evaluation criteria
To pass the exam, students must show that:
- they know and understand the fundamental concepts of general topology
- they know and understand the fundamental concepts of local theory of curves and surfaces
- they have analysis and abstraction abilities
- they can apply this knowledge in order to solve problems and exercises and they can rigorously support their arguments.
Criteria for the composition of the final grade
Written exam maximum mark 30/30. Oral part, if positive, could add at most 5 points.
Exam language
Italiano
Type D and Type F activities
Le attività formative di tipologia D sono a scelta dello studente, quelle di tipologia F sono ulteriori conoscenze utili all’inserimento nel mondo del lavoro (tirocini, competenze trasversali, project works, ecc.). In base al Regolamento Didattico del Corso, alcune attività possono essere scelte e inserite autonomamente a libretto, altre devono essere approvate da apposita commissione per verificarne la coerenza con il piano di studio. Le attività formative di tipologia D o F possono essere ricoperte dalle seguenti attività.
1. Insegnamenti impartiti presso l'Università di Verona
Comprendono gli insegnamenti sotto riportati e/o nel Catalogo degli insegnamenti (che può essere filtrato anche per lingua di erogazione tramite la Ricerca avanzata).
Modalità di inserimento a libretto: se l'insegnamento è compreso tra quelli sottoelencati, lo studente può inserirlo autonomamente durante il periodo in cui il piano di studi è aperto; in caso contrario, lo studente deve fare richiesta alla Segreteria, inviando a carriere.scienze@ateneo.univr.it il modulo nel periodo indicato.
2. Attestato o equipollenza linguistica CLA
Oltre a quelle richieste dal piano di studi, per gli immatricolati dall'A.A. 2021/2022 vengono riconosciute:
- Lingua inglese: vengono riconosciuti 3 CFU per ogni livello di competenza superiore a quello richiesto dal corso di studio (se non già riconosciuto nel ciclo di studi precedente).
- Altre lingue e italiano per stranieri: vengono riconosciuti 3 CFU per ogni livello di competenza a partire da A2 (se non già riconosciuto nel ciclo di studi precedente).
Tali cfu saranno riconosciuti, fino ad un massimo di 6 cfu complessivi, di tipologia F se il piano didattico lo consente, oppure di tipologia D. Ulteriori crediti a scelta per conoscenze linguistiche potranno essere riconosciuti solo se coerenti con il progetto formativo dello studente e se adeguatamente motivati.
Gli immatricolati fino all'A.A. 2020/2021 devono consultare le informazioni che si trovano qui.
Modalità di inserimento a libretto: richiedere l’attestato o l'equipollenza al CLA e inviarlo alla Segreteria Studenti - Carriere per l’inserimento dell’esame in carriera, tramite mail: carriere.scienze@ateneo.univr.it
3. Competenze trasversali
Scopri i percorsi formativi promossi dal TALC - Teaching and learning center dell'Ateneo, destinati agli studenti regolarmente iscritti all'anno accademico di erogazione del corso https://talc.univr.it/it/competenze-trasversali
Modalità di inserimento a libretto: non è previsto l'inserimento dell'insegnamento nel piano di studi. Solo in seguito all'ottenimento dell'Open Badge verranno automaticamente convalidati i CFU a libretto. La registrazione dei CFU in carriera non è istantanea, ma ci saranno da attendere dei tempi tecnici.
4. Periodo di stage/tirocinio
Oltre ai CFU previsti dal piano di studi (verificare attentamente quanto indicato sul Regolamento Didattico): qui informazioni su come attivare lo stage.
Insegnamenti e altre attività che si possono inserire autonomamente a libretto
Documents and news
- Modifiche al piano di studi (.doc) (octet-stream, it, 1314 KB, 30/06/21)
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° 3° | Algorithms | D |
Roberto Segala
(Coordinator)
|
1° 2° 3° | Basis of general chemistry | D |
Chiara Nardon
|
1° 2° 3° | Genetics | D |
Massimo Delledonne
(Coordinator)
|
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° 3° | Algorithms | D |
Roberto Segala
(Coordinator)
|
1° 2° 3° | LaTeX Language | D |
Enrico Gregorio
(Coordinator)
|
1° 2° 3° | Organization Studies | D |
Serena Cubico
(Coordinator)
|
1° 2° 3° | History and Didactics of Geology | D |
Guido Gonzato
(Coordinator)
|
years | Modules | TAF | Teacher | |
---|---|---|---|---|
1° | Subject requirements: mathematics | D |
Franco Zivcovich
|
|
1° 2° 3° | ECMI modelling week | F | Not yet assigned | |
1° 2° 3° | ESA Summer of code in space (SOCIS) | F | Not yet assigned | |
1° 2° 3° | Google summer of code (GSOC) | F | Not yet assigned | |
1° 2° 3° | Python programming language | D |
Giulio Mazzi
(Coordinator)
|
Career prospects
Module/Programme news
News for students
There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details: only in this way will you be able to receive notification of all the notices from your teachers and your secretariat via email and also via the Univr app.
Graduation
Documents
Title | Info File |
---|---|
1. Come scrivere una tesi | pdf, it, 31 KB, 29/07/21 |
2. How to write a thesis | pdf, it, 31 KB, 29/07/21 |
5. Regolamento tesi | pdf, it, 171 KB, 20/03/24 |
List of thesis proposals
theses proposals | Research area |
---|---|
Formule di rappresentazione per gradienti generalizzati | Mathematics - Analysis |
Formule di rappresentazione per gradienti generalizzati | Mathematics - Mathematics |
Proposte Tesi A. Gnoatto | Various topics |
Mathematics Bachelor and Master thesis titles | Various topics |
THESIS_1: Sensors and Actuators for Applications in Micro-Robotics and Robotic Surgery | Various topics |
THESIS_2: Force Feedback and Haptics in the Da Vinci Robot: study, analysis, and future perspectives | Various topics |
THESIS_3: Cable-Driven Systems in the Da Vinci Robotic Tools: study, analysis and optimization | Various topics |
Attendance modes and venues
As stated in the Teaching Regulations , except for specific practical or lab activities, attendance is not mandatory. Regarding these activities, please see the web page of each module for information on the number of hours that must be attended on-site.
Part-time enrolment is permitted. Find out more on the Part-time enrolment possibilities page.
The course's teaching activities take place in the Science and Engineering area, which consists of the buildings of Ca‘ Vignal 1, Ca’ Vignal 2, Ca' Vignal 3 and Piramide, located in the Borgo Roma campus.
Lectures are held in the classrooms of Ca‘ Vignal 1, Ca’ Vignal 2 and Ca' Vignal 3, while practical exercises take place in the teaching laboratories dedicated to the various activities.
Career management
Student login and resources
Erasmus+ and other experiences abroad
Ongoing orietnantion for students
The committee has the task of guiding the students throughout their studies, guiding them in their choice of educational pathways, making them active participants in the educational process and helping to overcome any individual difficulties.
It is composed of professors Sisto Baldo, Marco Caliari, Francesca Mantese, Giandomenico Orlandi and Nicola Sansonetto