Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
I sem. Oct 2, 2017 Jan 31, 2018
II sem. Mar 1, 2018 Jun 15, 2018
Exam sessions
Session From To
Sessione invernale d'esame Feb 1, 2018 Feb 28, 2018
Sessione estiva d'esame Jun 18, 2018 Jul 31, 2018
Sessione autunnale d'esame Sep 3, 2018 Sep 28, 2018
Degree sessions
Session From To
Sessione di laurea estiva Jul 18, 2018 Jul 18, 2018
Sessione di laurea autunnale Nov 22, 2018 Nov 22, 2018
Sessione di laurea invernale Mar 20, 2019 Mar 20, 2019
Holidays
Period From To
Christmas break Dec 22, 2017 Jan 7, 2018
Easter break Mar 30, 2018 Apr 3, 2018
Patron Saint Day May 21, 2018 May 21, 2018
Vacanze estive Aug 6, 2018 Aug 19, 2018

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrollment FAQs

Academic staff

B C D F G M O P Q S T U Z

Belussi Alberto

symbol email alberto.belussi@univr.it symbol phone-number +39 045 802 7980

Bombieri Nicola

symbol email nicola.bombieri@univr.it symbol phone-number +39 045 802 7094

Bonacina Maria Paola

symbol email mariapaola.bonacina@univr.it symbol phone-number +39 045 802 7046

Boscaini Maurizio

symbol email maurizio.boscaini@univr.it

Busato Federico

symbol email federico.busato@univr.it

Calanca Andrea

symbol email andrea.calanca@univr.it symbol phone-number +39 045 802 7847

Carra Damiano

symbol email damiano.carra@univr.it symbol phone-number +39 045 802 7059

Castellini Alberto

symbol email alberto.castellini@univr.it symbol phone-number +39 045 802 7908

Combi Carlo

symbol email carlo.combi@univr.it symbol phone-number +390458027985

Cristani Matteo

symbol email matteo.cristani@univr.it symbol phone-number 045 802 7983

Cristani Marco

symbol email marco.cristani@univr.it symbol phone-number +39 045 802 7841

Daffara Claudia

symbol email claudia.daffara@univr.it symbol phone-number +39 045 802 7942

Dall'Alba Diego

symbol email diego.dallalba@univr.it symbol phone-number +39 045 802 7074

Danese Alessandro

symbol email alessandro.danese@univr.it symbol phone-number 045 802 7048

Di Pierro Alessandra

symbol email alessandra.dipierro@univr.it symbol phone-number +39 045 802 7971

Fummi Franco

symbol email franco.fummi@univr.it symbol phone-number 045 802 7994

Geretti Luca

symbol email luca.geretti@univr.it symbol phone-number +39 045 802 7850

Giacobazzi Roberto

symbol email roberto.giacobazzi@univr.it symbol phone-number +39 045 802 7995

Gregorio Enrico

symbol email Enrico.Gregorio@univr.it symbol phone-number 045 802 7937

Maris Bogdan Mihai

symbol email bogdan.maris@univr.it symbol phone-number +39 045 802 7074

Marzola Pasquina

symbol email pasquina.marzola@univr.it symbol phone-number 045 802 7816 (ufficio); 045 802 7614 (laboratorio)

Mastroeni Isabella

symbol email isabella.mastroeni@univr.it symbol phone-number +390458027089

Oliboni Barbara

symbol email barbara.oliboni@univr.it symbol phone-number +39 045 802 7077

Posenato Roberto

symbol email roberto.posenato@univr.it symbol phone-number +39 045 802 7967

Pravadelli Graziano

symbol email graziano.pravadelli@univr.it symbol phone-number +39 045 802 7081

Quintarelli Elisa

symbol email elisa.quintarelli@univr.it symbol phone-number +390458027852

Segala Roberto

symbol email roberto.segala@univr.it symbol phone-number 045 802 7997

Setti Francesco

symbol email francesco.setti@univr.it symbol phone-number +39 045 802 7804

Spoto Nicola Fausto

symbol email fausto.spoto@univr.it symbol phone-number +39 045 8027940

Storti Silvia Francesca

symbol email silviafrancesca.storti@univr.it symbol phone-number +39 045 802 7850

Tomazzoli Claudio

symbol email claudio.tomazzoli@univr.it
UgoliniSimone

Ugolini Simone

symbol email simone.ugolini@univr.it
Zoppello,  May 3, 2019

Zoppello Marta

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.

2° Year  activated in the A.Y. 2018/2019

ModulesCreditsTAFSSD
12
B
INF/01
6
C
FIS/01
6
B
ING-INF/05
12
B
ING-INF/05

3° Year  activated in the A.Y. 2019/2020

ModulesCreditsTAFSSD
12
B
ING-INF/05
One course to be chosen among the following
6
B
INF/01
Training
6
F
-
Final exam
6
E
-
activated in the A.Y. 2018/2019
ModulesCreditsTAFSSD
12
B
INF/01
6
C
FIS/01
6
B
ING-INF/05
12
B
ING-INF/05
activated in the A.Y. 2019/2020
ModulesCreditsTAFSSD
12
B
ING-INF/05
One course to be chosen among the following
6
B
INF/01
Training
6
F
-
Final exam
6
E
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S00019

Credits

12

Language

Italian

Scientific Disciplinary Sector (SSD)

ING-INF/05 - INFORMATION PROCESSING SYSTEMS

The teaching is organized as follows:

Teoria

Credits

8

Period

I semestre

Academic staff

Graziano Pravadelli

Esercitazioni

Credits

2

Period

II semestre

Academic staff

Alessandro Danese

Laboratorio [Laboratorio 1]

Credits

2

Period

II semestre

Academic staff

Alessandro Danese

Laboratorio [Laboratorio 2]

Credits

2

Period

II semestre

Academic staff

Alberto Castellini

Learning outcomes

The course aims to provide an introduction to the principles and design of operating systems, with particular regard to the concepts related to the software architectures of an operating system, the management and synchronization of processes and the management of the resources of the system.
At the end of the course, the student will have acquired knowledge and skills related to the internal organization, operation and services of an operating system.
In particular, the student will have learned:
- the main functionalities of an operating system with respect to users and application programs;
- the strategies adopted by an operating system to manage the resources of a computer;
- the techniques used to implement the different components of an operating system.
Furthermore, the student will be able to apply the acquired knowledge and will have adequate comprehension skills for:
- develop programs with the awareness of how the operating system manages the resulting processes;
- develop applications that use the primitives (system calls) provided by the operating system;
- develop and modify components of an operating system.
Finally, the student will be able to:
- autonomously evaluate the advantages and disadvantages of different design choices within the services offered by an operating system;
- carry out a laboratory project and present the relative results motivating the choices with language appropriateness;
- develop the necessary skills to continue the study related to operating systems, addressing advanced issues related to the scenarios of distributed, real time and embedded systems.

Program

Theory
----------
* Introduction: Evolution and role of the operating system. Architectural concepts. Organization and functionality of an operating system.

* Process Management: Processes. Process status. Context switch. Process creation and termination. Thread. User-level threads and kernel-level threads. Process cooperation and communication: shared memory, messagges. Direct and indirect communication.

* Scheduling: CPU and I/O burst model. Long term, short term and medium term scheduling. Preemption. Scheduling criteria. Scheduling algorithm: FCFS, SJF, priority-based, RR, HRRN, multiple queues with and without feedback. Algorithm evaluation: deterministic and probabilistic models, simulation.

* Process synchronization: data coherency, atomic operations. Critical sections. SW approaches for mutual exclusion: Peterson and Dekker's algorithms, baker's algorithm. HW for mutual exclusion: test and set, swap. Synchronization constructs: semaphores, mutex, monitor.

* Deadlock: Deadlock conditions. Resource allocation graph. Deadlock prevention. Deadlock avoidance. Banker's algorithm. Deadlock detection e recovery.

* Memory management: Main memory. Logical and physical addressing. Relocation, address binding. Swapping. Memory allocation. Internal and external fragmentation. Paging. HW for paging: TLB. Page table. Multi-level paging. Segmentation. Segment table. Segmentation with paging.

* Virtual memory: Paging on demand. Page fault management. Page substitution algorithms: FIFO, optimal, LRU, LRU approximations. Page buffering. Frame allocation: local and global allocation. Thrashing. Working set model. Page fault frequency.

* Secondary memory. Logical and physical structure of disks. Latency time. Disk scheduling algorithms: FCFS, SSTF, SCAN, C-SCAN, LOOK, C-LOOK. RAID.

*File System: file, attributes and related operation. File types. Sequential and direct access. Directory structure. Access permissions and modes. Consistency semantics. File system structure. File system mounting. Allocation techniques: adjacent, linked, indexed. Free space management: bit vector, lists. Directory implementation: linear list, hash table.

* I/O subsystem: I/O Hardware. I/O techniques: programmed I/O, interrupt, DMA. Device driver and application interface. I/O kernel services: scheduling, buffering, caching, spooling.

Laboratory:
------------
* Shell programming in Unix/Linux.
* Introduction to the system programming in Unix/Linux.
* System calls for I/O.
* System calls for process management.
* System calls and techniques for inter-process communication and synchronization (pipe, fifo, message queue, share memory, semaphores, ...).

Bibliography

Reference texts
Activity Author Title Publishing house Year ISBN Notes
Teoria A. Silberschatz, P.B. Galvin, G. Gagne Sistemi operativi. Concetti ed esempi. (Edizione 9) Pearson 2014 9788865183717

Examination Methods

The exam is composed of two parts: theory and laboratory.
To pass the exam, the student must show
- they have understood the principles related to how an operating system works
- they are able to describe the concepts in a clear and exhaustive way without digressions
- they are able to apply the acquired knowledge to solve application scenarios described by means of exercises, questions and projects.

Theory:
-------
The final exam consists of a written test containing questions and exercises.

Laboratory:
-----------
The exam can be taken in two modes: oral or written.

Oral mode:
During the course, students must solve 4 homeworks and provide the corresponding solutions within deadlines defined by the theacher. Then, at the end of the course, on the second half of June, each student must present orally the provided solutions to the theacher.
The exam can be taken in oral mode only on the first week of July.
The observance of deadlines is mandatory. Students that miss the deadline cannot take the exam in the oral mode.

Written mode:
The exam consists of solving some exercises related to system programming by means of shell scripts and/or C programs.

Total grade
-----------
The total grade (thery+laboratory) is given by:
theory_grade*0.5 + laboratory_grade*0.5.

Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE

Teaching materials e documents

Type D and Type F activities

Modules not yet included

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details: only in this way will you be able to receive notification of all the notices from your teachers and your secretariat via email and soon also via the Univr app.

Graduation

For schedules, administrative requirements and notices on graduation sessions, please refer to the Graduation Sessions - Science and Engineering service.

List of theses and work experience proposals

theses proposals Research area
Analisi e percezione dei segnali biometrici per l'interazione con robot AI, Robotics & Automatic Control - AI, Robotics & Automatic Control
Integrazione del simulatore del robot Nao con Oculus Rift AI, Robotics & Automatic Control - AI, Robotics & Automatic Control
Domain Adaptation Computer Science and Informatics: Informatics and information systems, computer science, scientific computing, intelligent systems - Computer graphics, computer vision, multi media, computer games
Domain Adaptation Computer Science and Informatics: Informatics and information systems, computer science, scientific computing, intelligent systems - Machine learning, statistical data processing and applications using signal processing (e.g. speech, image, video)
BS or MS theses in automated reasoning Computing Methodologies - ARTIFICIAL INTELLIGENCE
Domain Adaptation Computing Methodologies - IMAGE PROCESSING AND COMPUTER VISION
Domain Adaptation Computing methodologies - Machine learning
Dati geografici Information Systems - INFORMATION SYSTEMS APPLICATIONS
Analisi e percezione dei segnali biometrici per l'interazione con robot Robotics - Robotics
Integrazione del simulatore del robot Nao con Oculus Rift Robotics - Robotics
BS or MS theses in automated reasoning Theory of computation - Logic
BS or MS theses in automated reasoning Theory of computation - Semantics and reasoning
Proposte di tesi/collaborazione/stage in Intelligenza Artificiale Applicata Various topics
Proposte di Tesi/Stage/Progetto nell'ambito dell'analisi dei dati Various topics

Attendance

As stated in the Teaching Regulations for the A.Y. 2022/2023, attendance at the course of study is not mandatory.
 


Career management


Student login and resources


Erasmus+ and other experiences abroad