Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
Primo semestre Oct 4, 2021 Jan 28, 2022
Secondo semestre Mar 7, 2022 Jun 10, 2022
Exam sessions
Session From To
Sessione invernale d'esame Jan 31, 2022 Mar 4, 2022
Sessione estiva d'esame Jun 13, 2022 Jul 29, 2022
Sessione autunnale d'esame Sep 1, 2022 Sep 30, 2022
Degree sessions
Session From To
Sessione Estiva Jul 12, 2022 Jul 12, 2022
Sessione Autunnale Oct 18, 2022 Oct 18, 2022
Sessione Autunnale Dicembre Dec 6, 2022 Dec 6, 2022
Sessione Invernale Mar 13, 2023 Mar 13, 2023
Holidays
Period From To
Festa di Tutti i Santi Nov 1, 2021 Nov 1, 2021
Festa dell'Immacolata Concezione Dec 8, 2021 Dec 8, 2021
Festività natalizie Dec 24, 2021 Jan 2, 2022
Festa dell'Epifania Jan 6, 2022 Jan 7, 2022
Festività pasquali Apr 15, 2022 Apr 19, 2022
Festa della Liberazione Apr 25, 2022 Apr 25, 2022
Festività Santo Patrono di Verona May 21, 2022 May 21, 2022
Festa della Repubblica Jun 2, 2022 Jun 2, 2022
Chiusura estiva Aug 15, 2022 Aug 20, 2022

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrollment FAQs

Academic staff

A B C D F G L M P Q R S T U V Z

Artegiani Elisa

symbol email elisa.artegiani@univr.it

Belussi Alberto

symbol email alberto.belussi@univr.it symbol phone-number +39 045 802 7980

Bicego Manuele

symbol email manuele.bicego@univr.it symbol phone-number +39 045 802 7072

Burato Alberto

symbol email alberto.burato@univr.it

Calanca Andrea

symbol email andrea.calanca@univr.it symbol phone-number +39 045 802 7847

Calgaro Matteo

symbol email matteo.calgaro_01@univr.it

Canevari Giacomo

symbol email giacomo.canevari@univr.it symbol phone-number +390458027979

Carra Damiano

symbol email damiano.carra@univr.it symbol phone-number +39 045 802 7059

Castellini Alberto

symbol email alberto.castellini@univr.it symbol phone-number +39 045 802 7908

Combi Carlo

symbol email carlo.combi@univr.it symbol phone-number +390458027985

Cozza Vittoria

symbol email vittoria.cozza@univr.it

Cristani Marco

symbol email marco.cristani@univr.it symbol phone-number +39 045 802 7841

Daffara Claudia

symbol email claudia.daffara@univr.it symbol phone-number +39 045 802 7942

Dalla Preda Mila

symbol email mila.dallapreda@univr.it

Dall'Ora Nicola

symbol email nicola.dallora@univr.it

Di Pierro Alessandra

symbol email alessandra.dipierro@univr.it symbol phone-number +39 045 802 7971

Drago Nicola

symbol email nicola.drago@univr.it symbol phone-number 045 802 7081

Farinelli Alessandro

symbol email alessandro.farinelli@univr.it symbol phone-number +39 045 802 7842

Fummi Franco

symbol email franco.fummi@univr.it symbol phone-number 045 802 7994

Giachetti Andrea

symbol email andrea.giachetti@univr.it symbol phone-number +39 045 8027998

Gregorio Enrico

symbol email Enrico.Gregorio@univr.it symbol phone-number 045 802 7937

Laking Rosanna Davison

symbol email rosanna.laking@univr.it

Lora Michele

symbol email michele.lora@univr.it symbol phone-number 0458027847

Mastroeni Isabella

symbol email isabella.mastroeni@univr.it symbol phone-number +390458027089

Migliorini Sara

symbol email sara.migliorini@univr.it symbol phone-number +39 045 802 7908

Pravadelli Graziano

symbol email graziano.pravadelli@univr.it symbol phone-number +39 045 802 7081

Quaglia Davide

symbol email davide.quaglia@univr.it symbol phone-number +39 045 802 7811

Quintarelli Elisa

symbol email elisa.quintarelli@univr.it symbol phone-number +390458027852

Rizzi Romeo

symbol email romeo.rizzi@univr.it symbol phone-number +39 045 8027088

Romeo Alessandro

symbol email alessandro.romeo@univr.it symbol phone-number +39 045 802 7936; Lab: +39 045 802 7808

Sala Pietro

symbol email pietro.sala@univr.it symbol phone-number 0458027850

Segala Roberto

symbol email roberto.segala@univr.it symbol phone-number 045 802 7997

Spoto Nicola Fausto

symbol email fausto.spoto@univr.it symbol phone-number +39 045 8027940

Storti Silvia Francesca

symbol email silviafrancesca.storti@univr.it symbol phone-number +39 045 802 7850

Tomazzoli Claudio

symbol email claudio.tomazzoli@univr.it

Villa Tiziano

symbol email tiziano.villa@univr.it symbol phone-number +39 045 802 7034

Visentin Francesco

symbol email francesco.visentin@univr.it symbol phone-number +39 045 802 7964

Zivcovich Franco

symbol email franco.zivcovich@univr.it

Zorzi Margherita

symbol email margherita.zorzi@univr.it symbol phone-number +39 045 802 7908

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.

2° Year  activated in the A.Y. 2022/2023

ModulesCreditsTAFSSD
12
B
INF/01
6
C
FIS/01
6
B
ING-INF/05
6
C
ING-INF/04
12
B
ING-INF/05

3° Year  activated in the A.Y. 2023/2024

ModulesCreditsTAFSSD
12
B
ING-INF/05
1 module among the following
6
C
INF/01
6
C
ING-INF/04
Final exam
6
E
-
activated in the A.Y. 2022/2023
ModulesCreditsTAFSSD
12
B
INF/01
6
C
FIS/01
6
B
ING-INF/05
6
C
ING-INF/04
12
B
ING-INF/05
activated in the A.Y. 2023/2024
ModulesCreditsTAFSSD
12
B
ING-INF/05
1 module among the following
6
C
INF/01
6
C
ING-INF/04
Final exam
6
E
-
Modules Credits TAF SSD
Between the years: 2°- 3°
Between the years: 2°- 3°
Training
6
F
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S008201

Credits

6

Language

Italian

Also offered in courses:

Scientific Disciplinary Sector (SSD)

ING-INF/06 - ELECTRONIC AND INFORMATICS BIOENGINEERING

Courses Single

Authorized

The teaching is organized as follows:

Modulo B Teoria

Credits

2

Period

Semester 1

Modulo A Teoria

Credits

2

Period

Semester 1

Modulo B Laboratorio

Credits

1

Period

Semester 1

Modulo A Laboratorio

Credits

1

Period

Semester 1

Learning objectives

The aim of this course is to provide the basic knowledge of methods and models for biomedical sig- nal and image processing, developing the ability to analyze and solve problems of interest, mainly in the biomedical field. Each technique presented will be accompanied by applications on simulated and real signals. At the end of the course, the student will be able to show knowledge of the main methods of biomedical signals and image processing. They will possess the ability to formulate, ana- lyze and solve problems of interest in bioengineering, through the acquired theoretical and practical basic knowledge. Finally, the student will be able to evaluate the traditional methods in the biomedical sciences in order to devise new approaches to methodological problems with clinical reversibility.

Prerequisites and basic notions

-

Program

------------------------
MM: Teoria
------------------------
(1) Main biomedical signals and images. Origin, characteristics and acquisition of the main bioelectric signals (electroencephalographic signal - EEG, magnetoencephalographic – MEG, electrocardiographic - ECG, electromyographic - EMG, spontaneous and induced signals, evoked potentials - EP, event-related potentials - ERP); introduction to bioimaging. (2) Analysis techniques in the time and frequency domains. Fundamentals of digital signal processing and characterization in the time domain. Digital filtering methods, sampling, A/D conversion. Classic methods for frequency analysis; frequency bands and power spectrum, periodogram; time/frequency resolution; bispectra and coherence; feature extraction methods. Brain source imaging (direct and inverse problems for EEG and MEG signals) and functional and effective connectivity analysis methods. Applications on in-silico and real signals. (3) Statistical analysis of biomedical data. Review of basic concepts of descriptive and inferential statistics. Description of the measurement error, statistical description of the experimental data: statistical indices, confidence intervals, hypothesis test and significance level, simple and multivariate linear regression for biomedical signals and images. (4) Brain-computer interfaces. Introduction to the main data processing methods that allow to decode brain activity in real time and convert it into a control signal for a brain-computer interface. We will discuss the BCI model and its historical context, the invasive and non-invasive techniques allowing to measure in real time the responses of an individual to particular stimuli, the data interpretation (filtering, future extraction, classification) and the BCI technology.
------------------------
MM: Laboratorio
------------------------
The course includes a series of laboratories in the computer lab with hands-on activities mainly in MATLAB environment aimed at familiarizing students with the main analysis methods of biomedical signals and images (e.g. ECG, EMG, EEG, evoked potentials, functional magnetic resonance imaging - fMRI). The laboratories also foresee a project activity in small groups for the solution of problems related to the analysis of biomedical data. The laboratories complement lectures by consolidating learning and developing problem-solving and hands-on practical skills in the context of bioengineering.

Bibliography

Visualizza la bibliografia con Leganto, strumento che il Sistema Bibliotecario mette a disposizione per recuperare i testi in programma d'esame in modo semplice e innovativo.

Didactic methods

Teaching methods. Regular lectures with power point presentation and blackboard, laboratory exercises and projects. The course approach is "hands on" where students will experiment the design and data analysis with the most suitable methodologies to solve real-life clinical-medical problems. Educational material will be available to students enrolled in the course on the Moodle platform. This material includes lecture presentations in PDF format and material related to laboratory activities. For further details and supplementary materials, please refer to the reference books.

Learning assessment procedures

Assessment is conducted via oral examination preceded by a discussion on the group project assigned during the lab.

Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE

Evaluation criteria

To pass the exam, the students must show that: - they have understood the theoretical and practical concepts of the course; - they are able to use the knowledge acquired during the course to solve the assigned problems related to the processing of biomedical signals and data; - they are able to program in MATLAB environment in the context of signal and biomedical data processing.

Criteria for the composition of the final grade

The final grade will be the average of the two grades (2/3 theory, 1/3 lab).

Exam language

Italiano

Type D and Type F activities

Le attività formative di tipologia D sono a scelta dello studente, quelle di tipologia F sono ulteriori conoscenze utili all’inserimento nel mondo del lavoro (tirocini, competenze trasversali, project works, ecc.). In base al Regolamento Didattico del Corso, alcune attività possono essere scelte e inserite autonomamente a libretto, altre devono essere approvate da apposita commissione per verificarne la coerenza con il piano di studio. Le attività formative di tipologia D o F possono essere ricoperte dalle seguenti attività.

1. Insegnamenti impartiti presso l'Università di Verona

Comprendono gli insegnamenti sotto riportati e/o nel Catalogo degli insegnamenti (che può essere filtrato anche per lingua di erogazione tramite la Ricerca avanzata).

Modalità di inserimento a libretto: se l'insegnamento è compreso tra quelli sottoelencati, lo studente può inserirlo autonomamente durante il periodo in cui il piano di studi è aperto; in caso contrario, lo studente deve fare richiesta alla Segreteria, inviando a carriere.scienze@ateneo.univr.it il modulo nel periodo indicato.

2. Attestato o equipollenza linguistica CLA

Oltre a quelle richieste dal piano di studi, per gli immatricolati dall'A.A. 2021/2022 vengono riconosciute:

  • Lingua inglese: vengono riconosciuti 3 CFU per ogni livello di competenza superiore a quello richiesto dal corso di studio (se non già riconosciuto nel ciclo di studi precedente).
  • Altre lingue e italiano per stranieri: vengono riconosciuti 3 CFU per ogni livello di competenza a partire da A2 (se non già riconosciuto nel ciclo di studi precedente).

Tali cfu saranno riconosciuti, fino ad un massimo di 6 cfu complessivi, di tipologia F se il piano didattico lo consente, oppure di tipologia D. Ulteriori crediti a scelta per conoscenze linguistiche potranno essere riconosciuti solo se coerenti con il progetto formativo dello studente e se adeguatamente motivati.

Gli immatricolati fino all'A.A. 2020/2021 devono consultare le informazioni che si trovano qui.

Modalità di inserimento a librettorichiedere l’attestato o l'equipollenza al CLA e inviarlo alla Segreteria Studenti - Carriere per l’inserimento dell’esame in carriera, tramite mail: carriere.scienze@ateneo.univr.it

3. Competenze trasversali

Scopri i percorsi formativi promossi dal TALC - Teaching and learning center dell'Ateneo, destinati agli studenti regolarmente iscritti all'anno accademico di erogazione del corso https://talc.univr.it/it/competenze-trasversali

Modalità di inserimento a libretto: non è previsto l'inserimento dell'insegnamento nel piano di studi. Solo in seguito all'ottenimento dell'Open Badge verranno automaticamente convalidati i CFU a libretto. La registrazione dei CFU in carriera non è istantanea, ma ci saranno da attendere dei tempi tecnici.  

4. Periodo di stage/tirocinio

Oltre ai CFU previsti dal piano di studi (verificare attentamente quanto indicato sul Regolamento Didattico): qui informazioni su come attivare lo stage. 

Verificare nel regolamento quali attività possono essere di tipologia D e quali di tipologia F.

Insegnamenti e altre attività che si possono inserire autonomamente a libretto

1° periodo lezioni (1A) From 9/16/21 To 10/30/21
years Modules TAF Teacher
2° 3° The fashion lab (1 ECTS) D Caterina Fratea (Coordinator)
Primo semestre From 10/4/21 To 1/28/22
years Modules TAF Teacher
2° 3° Introduction to Robotics for students of scientific courses. D Paolo Fiorini (Coordinator)
2° 3° Matlab-Simulink programming D Bogdan Mihai Maris (Coordinator)
Modules borrowed from the Faculty of Giurisprudenza
1° periodo lezioni (1B) From 11/5/21 To 12/16/21
years Modules TAF Teacher
2° 3° The fashion lab (1 ECTS) D Caterina Fratea (Coordinator)
Secondo semestre From 3/7/22 To 6/10/22
years Modules TAF Teacher
2° 3° Introduction to Robotics for students of scientific courses. D Paolo Fiorini (Coordinator)
2° 3° Introduction to 3D printing D Franco Fummi (Coordinator)
2° 3° LaTeX Language D Enrico Gregorio (Coordinator)
2° 3° HW components design on FPGA D Franco Fummi (Coordinator)
2° 3° Rapid prototyping on Arduino D Franco Fummi (Coordinator)
2° 3° Protection of intangible assets (SW and invention)between industrial law and copyright D Roberto Giacobazzi (Coordinator)
List of courses with unassigned period
years Modules TAF Teacher
Subject requirements: mathematics D Franco Zivcovich
2° 3° Python programming language D Giulio Mazzi (Coordinator)

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details: only in this way will you be able to receive notification of all the notices from your teachers and your secretariat via email and soon also via the Univr app.

Graduation

For schedules, administrative requirements and notices on graduation sessions, please refer to the Graduation Sessions - Science and Engineering service.

List of theses and work experience proposals

theses proposals Research area
Analisi e percezione dei segnali biometrici per l'interazione con robot AI, Robotics & Automatic Control - AI, Robotics & Automatic Control
Integrazione del simulatore del robot Nao con Oculus Rift AI, Robotics & Automatic Control - AI, Robotics & Automatic Control
Domain Adaptation Computer Science and Informatics: Informatics and information systems, computer science, scientific computing, intelligent systems - Computer graphics, computer vision, multi media, computer games
Domain Adaptation Computer Science and Informatics: Informatics and information systems, computer science, scientific computing, intelligent systems - Machine learning, statistical data processing and applications using signal processing (e.g. speech, image, video)
BS or MS theses in automated reasoning Computing Methodologies - ARTIFICIAL INTELLIGENCE
Domain Adaptation Computing Methodologies - IMAGE PROCESSING AND COMPUTER VISION
Domain Adaptation Computing methodologies - Machine learning
Dati geografici Information Systems - INFORMATION SYSTEMS APPLICATIONS
Analisi e percezione dei segnali biometrici per l'interazione con robot Robotics - Robotics
Integrazione del simulatore del robot Nao con Oculus Rift Robotics - Robotics
BS or MS theses in automated reasoning Theory of computation - Logic
BS or MS theses in automated reasoning Theory of computation - Semantics and reasoning
Proposte di tesi/collaborazione/stage in Intelligenza Artificiale Applicata Various topics
Proposte di Tesi/Stage/Progetto nell'ambito dell'analisi dei dati Various topics

Attendance

As stated in the Teaching Regulations for the A.Y. 2022/2023, attendance at the course of study is not mandatory.
Please refer to the Crisis Unit's latest updates for the mode of teaching.


Career management


Student login and resources


Erasmus+ and other experiences abroad