Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
Semester 1 Oct 3, 2022 Jan 27, 2023
Semester 2 Mar 6, 2023 Jun 16, 2023
Exam sessions
Session From To
Sessione invernale d'esame Jan 30, 2023 Mar 3, 2023
Sessione estiva d'esame Jun 19, 2023 Jul 31, 2023
Sessione autunnale d'esame Sep 4, 2023 Sep 29, 2023
Degree sessions
Session From To
Sessione di laurea estiva Jul 11, 2023 Jul 11, 2023
Sessione di laurea autunnale Oct 17, 2023 Oct 17, 2023
Sessione autunnale di laurea - dicembre Dec 5, 2023 Dec 5, 2023
Sessione invernale di laurea Mar 12, 2024 Mar 12, 2024
Holidays
Period From To
Ponte Festa di tutti i Santi Oct 31, 2022 Nov 1, 2022
Ponte dell'Immacolata Concezione Dec 8, 2022 Dec 9, 2022
Vacanze natalizie Dec 23, 2022 Jan 8, 2023
Vacanze di Pasqua Apr 7, 2023 Apr 10, 2023
Festa della Liberazione Apr 24, 2023 Apr 25, 2023
Festa del lavoro May 1, 2023 May 1, 2023
Festa del Santo Patrono May 21, 2023 May 21, 2023
Festa della Repubblica Jun 2, 2023 Jun 2, 2023
Chiusura estiva Aug 14, 2023 Aug 19, 2023

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrollment FAQs

Academic staff

B C D F G L M P Q R S T V Z

Belussi Alberto

symbol email alberto.belussi@univr.it symbol phone-number +39 045 802 7980

Bicego Manuele

symbol email manuele.bicego@univr.it symbol phone-number +39 045 802 7072

Boscaini Maurizio

symbol email maurizio.boscaini@univr.it

Burato Alberto

symbol email alberto.burato@univr.it

Calanca Andrea

symbol email andrea.calanca@univr.it symbol phone-number +39 045 802 7847

Calgaro Matteo

symbol email matteo.calgaro_01@univr.it

Canevari Giacomo

symbol email giacomo.canevari@univr.it symbol phone-number +390458027979

Carra Damiano

symbol email damiano.carra@univr.it symbol phone-number +39 045 802 7059

Castellini Alberto

symbol email alberto.castellini@univr.it symbol phone-number +39 045 802 7908

Centomo Stefano

symbol email stefano.centomo@univr.it symbol phone-number 045 802(7048)

Collet Francesca

symbol email francesca.collet@univr.it symbol phone-number +39 045 8027979

Combi Carlo

symbol email carlo.combi@univr.it symbol phone-number +390458027985

Cozza Vittoria

symbol email vittoria.cozza@univr.it

Cristani Marco

symbol email marco.cristani@univr.it symbol phone-number +39 045 802 7841

Daffara Claudia

symbol email claudia.daffara@univr.it symbol phone-number +39 045 802 7942

Dai Pra Paolo

symbol email paolo.daipra@univr.it symbol phone-number +39 0458027093

Dalla Preda Mila

symbol email mila.dallapreda@univr.it

Di Pierro Alessandra

symbol email alessandra.dipierro@univr.it symbol phone-number +39 045 802 7971

Drago Nicola

symbol email nicola.drago@univr.it symbol phone-number 045 802 7081

Farinelli Alessandro

symbol email alessandro.farinelli@univr.it symbol phone-number +39 045 802 7842

Fiorini Paolo

symbol email paolo.fiorini@univr.it symbol phone-number 045 802 7963

Fummi Franco

symbol email franco.fummi@univr.it symbol phone-number 045 802 7994

Giachetti Andrea

symbol email andrea.giachetti@univr.it symbol phone-number +39 045 8027998

Giacobazzi Roberto

symbol email roberto.giacobazzi@univr.it symbol phone-number +39 045 802 7995

Ginesi Michele

symbol email michele.ginesi@univr.it

Gregorio Enrico

symbol email Enrico.Gregorio@univr.it symbol phone-number 045 802 7937

Laking Rosanna Davison

symbol email rosanna.laking@univr.it symbol phone-number +39 0458027838

Lora Michele

symbol email michele.lora@univr.it symbol phone-number 0458027847

Maris Bogdan Mihai

symbol email bogdan.maris@univr.it symbol phone-number +39 045 802 7074

Marzola Pasquina

symbol email pasquina.marzola@univr.it symbol phone-number 045 802 7816 (ufficio); 045 802 7614 (laboratorio)

Mastroeni Isabella

symbol email isabella.mastroeni@univr.it symbol phone-number +390458027089

Migliorini Sara

symbol email sara.migliorini@univr.it symbol phone-number +39 045 802 7908

Muradore Riccardo

symbol email riccardo.muradore@univr.it symbol phone-number +39 045 802 7835

Pravadelli Graziano

symbol email graziano.pravadelli@univr.it symbol phone-number +39 045 802 7081

Quaglia Davide

symbol email davide.quaglia@univr.it symbol phone-number +39 045 802 7811

Quintarelli Elisa

symbol email elisa.quintarelli@univr.it symbol phone-number +390458027852

Rizzi Romeo

symbol email romeo.rizzi@univr.it symbol phone-number +39 045 8027088

Sala Pietro

symbol email pietro.sala@univr.it symbol phone-number 0458027850

Segala Roberto

symbol email roberto.segala@univr.it symbol phone-number 045 802 7997

Setti Francesco

symbol email francesco.setti@univr.it symbol phone-number +39 045 802 7804

Spellini Stefano

symbol email stefano.spellini@univr.it

Spoto Nicola Fausto

symbol email fausto.spoto@univr.it symbol phone-number +39 045 8027940

Storti Silvia Francesca

symbol email silviafrancesca.storti@univr.it symbol phone-number +39 045 802 7850

Tomazzoli Claudio

symbol email claudio.tomazzoli@univr.it

Visentin Francesco

symbol email francesco.visentin@univr.it symbol phone-number +39 045 802 7964

Zivcovich Franco

symbol email franco.zivcovich@univr.it

Zorzi Margherita

symbol email margherita.zorzi@univr.it symbol phone-number +39 045 802 7045

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.

2° Year  activated in the A.Y. 2023/2024

ModulesCreditsTAFSSD
12
B
INF/01
6
C
FIS/01
6
B
ING-INF/05
6
C
ING-INF/04
12
B
ING-INF/05

3° Year  activated in the A.Y. 2024/2025

ModulesCreditsTAFSSD
12
B
ING-INF/05
Final exam
6
E
-
activated in the A.Y. 2023/2024
ModulesCreditsTAFSSD
12
B
INF/01
6
C
FIS/01
6
B
ING-INF/05
6
C
ING-INF/04
12
B
ING-INF/05
activated in the A.Y. 2024/2025
ModulesCreditsTAFSSD
12
B
ING-INF/05
Final exam
6
E
-
Modules Credits TAF SSD
Between the years: 2°- 3°
Training
6
F
-
Between the years: 2°- 3°

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S02843

Credits

6

Coordinator

Paolo Dai Pra

Language

Italian

Scientific Disciplinary Sector (SSD)

MAT/06 - PROBABILITY AND STATISTICS

The teaching is organized as follows:

Teoria

Credits

4

Period

Semester 2

Laboratorio

Credits

2

Period

Semester 2

Academic staff

Matteo Calgaro

Learning objectives

The course aims at providing the fundamental concepts of descriptive statistics and probability, with the task of modeling real problems by means of probability methods and applying to real problems statistic techniques. At the end of the course the student will have to demonstrate to understand the main statistical techniques for describing problems; to be able to interpret results of statistical analyses; to be able to develop know-how necessary to continue the study autonomously in the context of statistical analysis.

Prerequisites and basic notions

-

Program

------------------------
MM: Teoria
------------------------
(1) Descriptive Statistics. Describing data sets (frequency tables and graphs). Summarizing data sets (sample mean, median, and mode, sample variance and standard deviation, percentiles and box plots). Normal data sets. Sample correlation coefficient. (2) Probability theory. Elements of probability: sample space and events, Venn diagrams and the algebra of events, axioms of probability, sample spaces having equally likely outcomes, conditional probability, Bayes’ formula, independent events. Random variables and expectation: types of random variables, expected value and properties, variance, covariance and variance of sums of random variables. Moment generating functions. Weak law of large numbers. Special random variables: special random variables and distributions arising from the normal (chi-square, t, F). (3) Statistical inference. Distributions of sampling statistics. Parameter estimation (maximum likelihood estimators, interval estimates). Hypothesis testing and significance levels. (4) Regression. Least squares estimators of the regression parameters. Distribution of the estimators. Statistical inferences about the regression parameters. The coefficient of determination and the sample correlation coefficient. Analysis of residuals: assessing the model. Transforming to linearity. Weighted least squares.
------------------------
MM: Laboratorio
------------------------
The course includes a series of laboratories in the computer lab with exercises in MATLAB environment. After an introduction to MATLAB and to the main functions and tools useful for statistics, some exercises will be proposed on descriptive statistics and probability; for computing the probability density function (pdf) and cumulative distribution function (cdf) of special random variables, for generating random data and estimating parameters; on hypothesis testing for distributions and linear regression. The laboratories complement lectures by consolidating learning and developing problem-solving and hands-on practical skills.

Bibliography

Visualizza la bibliografia con Leganto, strumento che il Sistema Bibliotecario mette a disposizione per recuperare i testi in programma d'esame in modo semplice e innovativo.

Didactic methods

Teaching methods. Regular lectures with power point presentation and blackboard and laboratory exercises. Educational material will be available to students enrolled in the course on the Moodle platform. This material includes lecture presentations in PDF format and material related to laboratory activities. For further details and supplementary materials, please refer to the reference books.

Learning assessment procedures

The exam consists of a computer test via Moodle. The exam consists of theoretical questions (test with multiple choice), problems, and laboratory questions (open questions).

Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE

Evaluation criteria

To pass the exam, the students must show that: - they have understood the basic concepts of probability theory and statistics; - they are able to use the knowledge acquired during the course to solve the assigned problem; - they are able to program in MATLAB environment in the statistical and probabilistic context.

Criteria for the composition of the final grade

The final grade will be the average of the three grades (theory, exercises, laboratory).

Exam language

Italiano

Type D and Type F activities

Le attività formative di tipologia D sono a scelta dello studente, quelle di tipologia F sono ulteriori conoscenze utili all’inserimento nel mondo del lavoro (tirocini, competenze trasversali, project works, ecc.). In base al Regolamento Didattico del Corso, alcune attività possono essere scelte e inserite autonomamente a libretto, altre devono essere approvate da apposita commissione per verificarne la coerenza con il piano di studio. Le attività formative di tipologia D o F possono essere ricoperte dalle seguenti attività.

1. Insegnamenti impartiti presso l'Università di Verona

Comprendono gli insegnamenti sotto riportati e/o nel Catalogo degli insegnamenti (che può essere filtrato anche per lingua di erogazione tramite la Ricerca avanzata).

Modalità di inserimento a libretto: se l'insegnamento è compreso tra quelli sottoelencati, lo studente può inserirlo autonomamente durante il periodo in cui il piano di studi è aperto; in caso contrario, lo studente deve fare richiesta alla Segreteria, inviando a carriere.scienze@ateneo.univr.it il modulo nel periodo indicato.

2. Attestato o equipollenza linguistica CLA

Oltre a quelle richieste dal piano di studi, per gli immatricolati dall'A.A. 2021/2022 vengono riconosciute:

  • Lingua inglese: vengono riconosciuti 3 CFU per ogni livello di competenza superiore a quello richiesto dal corso di studio (se non già riconosciuto nel ciclo di studi precedente).
  • Altre lingue e italiano per stranieri: vengono riconosciuti 3 CFU per ogni livello di competenza a partire da A2 (se non già riconosciuto nel ciclo di studi precedente).

Tali cfu saranno riconosciuti, fino ad un massimo di 6 cfu complessivi, di tipologia F se il piano didattico lo consente, oppure di tipologia D. Ulteriori crediti a scelta per conoscenze linguistiche potranno essere riconosciuti solo se coerenti con il progetto formativo dello studente e se adeguatamente motivati.

Gli immatricolati fino all'A.A. 2020/2021 devono consultare le informazioni che si trovano qui.

Modalità di inserimento a librettorichiedere l’attestato o l'equipollenza al CLA e inviarlo alla Segreteria Studenti - Carriere per l’inserimento dell’esame in carriera, tramite mail: carriere.scienze@ateneo.univr.it

3. Competenze trasversali

Scopri i percorsi formativi promossi dal TALC - Teaching and learning center dell'Ateneo, destinati agli studenti regolarmente iscritti all'anno accademico di erogazione del corso https://talc.univr.it/it/competenze-trasversali

Modalità di inserimento a libretto: non è previsto l'inserimento dell'insegnamento nel piano di studi. Solo in seguito all'ottenimento dell'Open Badge verranno automaticamente convalidati i CFU a libretto. La registrazione dei CFU in carriera non è istantanea, ma ci saranno da attendere dei tempi tecnici. 

4. CONTAMINATION LAB

Il Contamination Lab Verona (CLab Verona) è un percorso esperienziale con moduli dedicati all'innovazione e alla cultura d'impresa che offre la possibilità di lavorare in team con studenti e studentesse di tutti i corsi di studio per risolvere sfide lanciate da aziende ed enti. Il percorso permette di ricevere 6 CFU in ambito D o F. Scopri le sfide: https://www.univr.it/clabverona

ATTENZIONE: Per essere ammessi a sostenere una qualsiasi attività didattica, incluse quelle a scelta, è necessario essere iscritti all'anno di corso in cui essa viene offerta. Si raccomanda, pertanto, ai laureandi delle sessioni di dicembre e aprile di NON svolgere attività extracurriculari del nuovo anno accademico, cui loro non risultano iscritti, essendo tali sessioni di laurea con validità riferita all'anno accademico precedente. Quindi, per attività svolte in un anno accademico cui non si è iscritti, non si potrà dar luogo a riconoscimento di CFU.

5. Periodo di stage/tirocinio

Oltre ai CFU previsti dal piano di studi (verificare attentamente quanto indicato sul Regolamento Didattico): qui informazioni su come attivare lo stage. 

Verificare nel regolamento quali attività possono essere di tipologia D e quali di tipologia F.

Insegnamenti e altre attività che si possono inserire autonomamente a libretto

Semester 1 From 10/3/22 To 1/27/23
years Modules TAF Teacher
2° 3° Introduction to Docker D Franco Fummi (Coordinator)
2° 3° Introduction to Robotics for students of scientific courses. D Paolo Fiorini (Coordinator)
2° 3° Matlab-Simulink programming D Bogdan Mihai Maris (Coordinator)
2° 3° Mobile app design by using React Native D Graziano Pravadelli (Coordinator)
2° 3° Rapid prototyping on Arduino D Franco Fummi (Coordinator)
2° 3° Programming Challanges D Romeo Rizzi (Coordinator)
Semester 2 From 3/6/23 To 6/16/23
years Modules TAF Teacher
2° 3° Introduction to 3D printing D Franco Fummi (Coordinator)
2° 3° LaTeX Language D Enrico Gregorio (Coordinator)
2° 3° Python programming language D Carlo Combi (Coordinator)
2° 3° HW components design on FPGA D Franco Fummi (Coordinator)
2° 3° Protection of intangible assets (SW and invention)between industrial law and copyright D Roberto Giacobazzi (Coordinator)
List of courses with unassigned period
years Modules TAF Teacher
Subject requirements: mathematics D Franco Zivcovich

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details: only in this way will you be able to receive notification of all the notices from your teachers and your secretariat via email and also via the Univr app.

Graduation

For schedules, administrative requirements and notices on graduation sessions, please refer to the Graduation Sessions - Science and Engineering service.

List of thesis proposals

theses proposals Research area
Analisi e percezione dei segnali biometrici per l'interazione con robot AI, Robotics & Automatic Control - AI, Robotics & Automatic Control
Integrazione del simulatore del robot Nao con Oculus Rift AI, Robotics & Automatic Control - AI, Robotics & Automatic Control
Domain Adaptation Computer Science and Informatics: Informatics and information systems, computer science, scientific computing, intelligent systems - Computer graphics, computer vision, multi media, computer games
Domain Adaptation Computer Science and Informatics: Informatics and information systems, computer science, scientific computing, intelligent systems - Machine learning, statistical data processing and applications using signal processing (e.g. speech, image, video)
BS or MS theses in automated reasoning Computing Methodologies - ARTIFICIAL INTELLIGENCE
Domain Adaptation Computing Methodologies - IMAGE PROCESSING AND COMPUTER VISION
Domain Adaptation Computing methodologies - Machine learning
Dati geografici Information Systems - INFORMATION SYSTEMS APPLICATIONS
Analisi e percezione dei segnali biometrici per l'interazione con robot Robotics - Robotics
Integrazione del simulatore del robot Nao con Oculus Rift Robotics - Robotics
BS or MS theses in automated reasoning Theory of computation - Logic
BS or MS theses in automated reasoning Theory of computation - Semantics and reasoning
Proposte di tesi/collaborazione/stage in Intelligenza Artificiale Applicata Various topics
Proposte di Tesi/Stage/Progetto nell'ambito dell'analisi dei dati Various topics

Tutoring faculty members


Attendance modes and venues

As stated in the Teaching Regulations, attendance at the course of study is not mandatory.

Part-time enrolment is permitted. Find out more on the Part-time enrolment possibilities page.

The course's teaching activities take place in the Science and Engineering area, which consists of the buildings of Ca‘ Vignal 1, Ca’ Vignal 2, Ca' Vignal 3 and Piramide, located in the Borgo Roma campus. 
Lectures are held in the classrooms of Ca‘ Vignal 1, Ca’ Vignal 2 and Ca' Vignal 3, while practical exercises take place in the teaching laboratories dedicated to the various activities.

 


Career management


Student login and resources


Erasmus+ and other experiences abroad