Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Academic calendar
The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.
Course calendar
The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..
Period | From | To |
---|---|---|
Semester 1 | Oct 3, 2022 | Jan 27, 2023 |
Semester 2 | Mar 6, 2023 | Jun 16, 2023 |
Session | From | To |
---|---|---|
Sessione invernale d'esame | Jan 30, 2023 | Mar 3, 2023 |
Sessione estiva d'esame | Jun 19, 2023 | Jul 31, 2023 |
Sessione autunnale d'esame | Sep 4, 2023 | Sep 29, 2023 |
Session | From | To |
---|---|---|
Sessione di laurea estiva | Jul 11, 2023 | Jul 11, 2023 |
Sessione di laurea autunnale | Oct 17, 2023 | Oct 17, 2023 |
Sessione autunnale di laurea - dicembre | Dec 5, 2023 | Dec 5, 2023 |
Sessione invernale di laurea | Mar 12, 2024 | Mar 12, 2024 |
Period | From | To |
---|---|---|
Ponte Festa di tutti i Santi | Oct 31, 2022 | Nov 1, 2022 |
Ponte dell'Immacolata Concezione | Dec 8, 2022 | Dec 9, 2022 |
Vacanze natalizie | Dec 23, 2022 | Jan 8, 2023 |
Vacanze di Pasqua | Apr 7, 2023 | Apr 10, 2023 |
Festa della Liberazione | Apr 24, 2023 | Apr 25, 2023 |
Festa del lavoro | May 1, 2023 | May 1, 2023 |
Festa del Santo Patrono | May 21, 2023 | May 21, 2023 |
Festa della Repubblica | Jun 2, 2023 | Jun 2, 2023 |
Chiusura estiva | Aug 14, 2023 | Aug 19, 2023 |
Exam calendar
Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.
Academic staff
Study Plan
The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.
1° Year
Modules | Credits | TAF | SSD |
---|
Mathematical analysis 1
Computer Architecture
2° Year activated in the A.Y. 2023/2024
Modules | Credits | TAF | SSD |
---|
3° Year activated in the A.Y. 2024/2025
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Mathematical analysis 1
Computer Architecture
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
Probability and Statistics (2022/2023)
Teaching code
4S02843
Credits
6
Language
Italian
Scientific Disciplinary Sector (SSD)
MAT/06 - PROBABILITY AND STATISTICS
The teaching is organized as follows:
Teoria
Laboratorio
Learning objectives
The course aims at providing the fundamental concepts of descriptive statistics and probability, with the task of modeling real problems by means of probability methods and applying to real problems statistic techniques. At the end of the course the student will have to demonstrate to understand the main statistical techniques for describing problems; to be able to interpret results of statistical analyses; to be able to develop know-how necessary to continue the study autonomously in the context of statistical analysis.
Prerequisites and basic notions
-
Program
------------------------
MM: Teoria
------------------------
(1) Descriptive Statistics. Describing data sets (frequency tables and graphs). Summarizing data sets (sample mean, median, and mode, sample variance and standard deviation, percentiles and box plots). Normal data sets. Sample correlation coefficient. (2) Probability theory. Elements of probability: sample space and events, Venn diagrams and the algebra of events, axioms of probability, sample spaces having equally likely outcomes, conditional probability, Bayes’ formula, independent events. Random variables and expectation: types of random variables, expected value and properties, variance, covariance and variance of sums of random variables. Moment generating functions. Weak law of large numbers. Special random variables: special random variables and distributions arising from the normal (chi-square, t, F). (3) Statistical inference. Distributions of sampling statistics. Parameter estimation (maximum likelihood estimators, interval estimates). Hypothesis testing and significance levels. (4) Regression. Least squares estimators of the regression parameters. Distribution of the estimators. Statistical inferences about the regression parameters. The coefficient of determination and the sample correlation coefficient. Analysis of residuals: assessing the model. Transforming to linearity. Weighted least squares.
------------------------
MM: Laboratorio
------------------------
The course includes a series of laboratories in the computer lab with exercises in MATLAB environment. After an introduction to MATLAB and to the main functions and tools useful for statistics, some exercises will be proposed on descriptive statistics and probability; for computing the probability density function (pdf) and cumulative distribution function (cdf) of special random variables, for generating random data and estimating parameters; on hypothesis testing for distributions and linear regression. The laboratories complement lectures by consolidating learning and developing problem-solving and hands-on practical skills.
Bibliography
Didactic methods
Teaching methods. Regular lectures with power point presentation and blackboard and laboratory exercises. Educational material will be available to students enrolled in the course on the Moodle platform. This material includes lecture presentations in PDF format and material related to laboratory activities. For further details and supplementary materials, please refer to the reference books.
Learning assessment procedures
The exam consists of a computer test via Moodle. The exam consists of theoretical questions (test with multiple choice), problems, and laboratory questions (open questions).
Evaluation criteria
To pass the exam, the students must show that: - they have understood the basic concepts of probability theory and statistics; - they are able to use the knowledge acquired during the course to solve the assigned problem; - they are able to program in MATLAB environment in the statistical and probabilistic context.
Criteria for the composition of the final grade
The final grade will be the average of the three grades (theory, exercises, laboratory).
Exam language
Italiano
Type D and Type F activities
Le attività formative di tipologia D sono a scelta dello studente, quelle di tipologia F sono ulteriori conoscenze utili all’inserimento nel mondo del lavoro (tirocini, competenze trasversali, project works, ecc.). In base al Regolamento Didattico del Corso, alcune attività possono essere scelte e inserite autonomamente a libretto, altre devono essere approvate da apposita commissione per verificarne la coerenza con il piano di studio. Le attività formative di tipologia D o F possono essere ricoperte dalle seguenti attività.
1. Insegnamenti impartiti presso l'Università di Verona
Comprendono gli insegnamenti sotto riportati e/o nel Catalogo degli insegnamenti (che può essere filtrato anche per lingua di erogazione tramite la Ricerca avanzata).
Modalità di inserimento a libretto: se l'insegnamento è compreso tra quelli sottoelencati, lo studente può inserirlo autonomamente durante il periodo in cui il piano di studi è aperto; in caso contrario, lo studente deve fare richiesta alla Segreteria, inviando a carriere.scienze@ateneo.univr.it il modulo nel periodo indicato.
2. Attestato o equipollenza linguistica CLA
Oltre a quelle richieste dal piano di studi, per gli immatricolati dall'A.A. 2021/2022 vengono riconosciute:
- Lingua inglese: vengono riconosciuti 3 CFU per ogni livello di competenza superiore a quello richiesto dal corso di studio (se non già riconosciuto nel ciclo di studi precedente).
- Altre lingue e italiano per stranieri: vengono riconosciuti 3 CFU per ogni livello di competenza a partire da A2 (se non già riconosciuto nel ciclo di studi precedente).
Tali cfu saranno riconosciuti, fino ad un massimo di 6 cfu complessivi, di tipologia F se il piano didattico lo consente, oppure di tipologia D. Ulteriori crediti a scelta per conoscenze linguistiche potranno essere riconosciuti solo se coerenti con il progetto formativo dello studente e se adeguatamente motivati.
Gli immatricolati fino all'A.A. 2020/2021 devono consultare le informazioni che si trovano qui.
Modalità di inserimento a libretto: richiedere l’attestato o l'equipollenza al CLA e inviarlo alla Segreteria Studenti - Carriere per l’inserimento dell’esame in carriera, tramite mail: carriere.scienze@ateneo.univr.it
3. Competenze trasversali
Scopri i percorsi formativi promossi dal TALC - Teaching and learning center dell'Ateneo, destinati agli studenti regolarmente iscritti all'anno accademico di erogazione del corso https://talc.univr.it/it/competenze-trasversali
Modalità di inserimento a libretto: non è previsto l'inserimento dell'insegnamento nel piano di studi. Solo in seguito all'ottenimento dell'Open Badge verranno automaticamente convalidati i CFU a libretto. La registrazione dei CFU in carriera non è istantanea, ma ci saranno da attendere dei tempi tecnici.
4. CONTAMINATION LAB
Il Contamination Lab Verona (CLab Verona) è un percorso esperienziale con moduli dedicati all'innovazione e alla cultura d'impresa che offre la possibilità di lavorare in team con studenti e studentesse di tutti i corsi di studio per risolvere sfide lanciate da aziende ed enti. Il percorso permette di ricevere 6 CFU in ambito D o F. Scopri le sfide: https://www.univr.it/clabverona
ATTENZIONE: Per essere ammessi a sostenere una qualsiasi attività didattica, incluse quelle a scelta, è necessario essere iscritti all'anno di corso in cui essa viene offerta. Si raccomanda, pertanto, ai laureandi delle sessioni di dicembre e aprile di NON svolgere attività extracurriculari del nuovo anno accademico, cui loro non risultano iscritti, essendo tali sessioni di laurea con validità riferita all'anno accademico precedente. Quindi, per attività svolte in un anno accademico cui non si è iscritti, non si potrà dar luogo a riconoscimento di CFU.
5. Periodo di stage/tirocinio
Oltre ai CFU previsti dal piano di studi (verificare attentamente quanto indicato sul Regolamento Didattico): qui informazioni su come attivare lo stage.
Insegnamenti e altre attività che si possono inserire autonomamente a libretto
years | Modules | TAF | Teacher |
---|---|---|---|
2° 3° | Introduction to Docker | D |
Franco Fummi
(Coordinator)
|
2° 3° | Introduction to Robotics for students of scientific courses. | D |
Paolo Fiorini
(Coordinator)
|
2° 3° | Matlab-Simulink programming | D |
Bogdan Mihai Maris
(Coordinator)
|
2° 3° | Mobile app design by using React Native | D |
Graziano Pravadelli
(Coordinator)
|
2° 3° | Rapid prototyping on Arduino | D |
Franco Fummi
(Coordinator)
|
2° 3° | Programming Challanges | D |
Romeo Rizzi
(Coordinator)
|
years | Modules | TAF | Teacher |
---|---|---|---|
2° 3° | Introduction to 3D printing | D |
Franco Fummi
(Coordinator)
|
2° 3° | LaTeX Language | D |
Enrico Gregorio
(Coordinator)
|
2° 3° | Python programming language | D |
Carlo Combi
(Coordinator)
|
2° 3° | HW components design on FPGA | D |
Franco Fummi
(Coordinator)
|
2° 3° | Protection of intangible assets (SW and invention)between industrial law and copyright | D |
Roberto Giacobazzi
(Coordinator)
|
years | Modules | TAF | Teacher |
---|---|---|---|
1° | Subject requirements: mathematics | D |
Franco Zivcovich
|
Career prospects
Module/Programme news
News for students
There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details: only in this way will you be able to receive notification of all the notices from your teachers and your secretariat via email and also via the Univr app.
Graduation
List of thesis proposals
theses proposals | Research area |
---|---|
Analisi e percezione dei segnali biometrici per l'interazione con robot | AI, Robotics & Automatic Control - AI, Robotics & Automatic Control |
Integrazione del simulatore del robot Nao con Oculus Rift | AI, Robotics & Automatic Control - AI, Robotics & Automatic Control |
Domain Adaptation | Computer Science and Informatics: Informatics and information systems, computer science, scientific computing, intelligent systems - Computer graphics, computer vision, multi media, computer games |
Domain Adaptation | Computer Science and Informatics: Informatics and information systems, computer science, scientific computing, intelligent systems - Machine learning, statistical data processing and applications using signal processing (e.g. speech, image, video) |
BS or MS theses in automated reasoning | Computing Methodologies - ARTIFICIAL INTELLIGENCE |
Domain Adaptation | Computing Methodologies - IMAGE PROCESSING AND COMPUTER VISION |
Domain Adaptation | Computing methodologies - Machine learning |
Dati geografici | Information Systems - INFORMATION SYSTEMS APPLICATIONS |
Analisi e percezione dei segnali biometrici per l'interazione con robot | Robotics - Robotics |
Integrazione del simulatore del robot Nao con Oculus Rift | Robotics - Robotics |
BS or MS theses in automated reasoning | Theory of computation - Logic |
BS or MS theses in automated reasoning | Theory of computation - Semantics and reasoning |
Proposte di tesi/collaborazione/stage in Intelligenza Artificiale Applicata | Various topics |
Proposte di Tesi/Stage/Progetto nell'ambito dell'analisi dei dati | Various topics |
Tutoring faculty members
Attendance modes and venues
As stated in the Teaching Regulations, attendance at the course of study is not mandatory.
Part-time enrolment is permitted. Find out more on the Part-time enrolment possibilities page.
The course's teaching activities take place in the Science and Engineering area, which consists of the buildings of Ca‘ Vignal 1, Ca’ Vignal 2, Ca' Vignal 3 and Piramide, located in the Borgo Roma campus.
Lectures are held in the classrooms of Ca‘ Vignal 1, Ca’ Vignal 2 and Ca' Vignal 3, while practical exercises take place in the teaching laboratories dedicated to the various activities.