Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.

3° Year  activated in the A.Y. 2023/2024

ModulesCreditsTAFSSD
6
A/B
MED/25 ,MED/45 ,M-PSI/01 ,SPS/07
Final exam
7
E
-
activated in the A.Y. 2023/2024
ModulesCreditsTAFSSD
6
A/B
MED/25 ,MED/45 ,M-PSI/01 ,SPS/07
Final exam
7
E
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S000089

Credits

4

Coordinator

Cristina Bombieri

Language

Italian

The teaching is organized as follows:

BIOCHIMICA

Credits

2

Period

1 SEMESTRE PROFESSIONI SANITARIE

Academic staff

Daniele Dell'Orco

BIOLOGIA APPLICATA

Credits

2

Period

1 SEMESTRE PROFESSIONI SANITARIE

Academic staff

Cristina Bombieri

Learning outcomes

The course provides knowledge of biology, biochemistry and genetics necessary for understanding the physiological and pathological processes related to health and disease of individuals in different stages of life. Biological and biochemical knowledge will contribute to the acquisition of skills that improve people's health and nursing care. At the end of the course students will possess basic knowledge of organic chemistry and biochemistry, the structure-function relationships of the main classes of biological macromolecules, their metabolic regulation and the energy transformations of biochemical processes; knowledge of cellular and genetic biology related to structural, functional and molecular characteristics of the cell; understanding of the applications of genomic knowledge to medicine. This knowledge will enable students to understand cellular processes common to all living organisms, the basic mechanisms that regulate metabolic activity, reproduction and cellular interactions and transmission of genetic diseases in humans. BIOCHEMISTRY: the Course provides: -Basic knowledge of organic chemistry preparatory for biochemistry. -Knowledge related to the structure-function relationships of the most important biological macromolecules and to their metabolic regulation. -Knowledge about the relation between the different biochemical processes and the regulation of the energy level associated to them. At the end of the course the student will acquired the proper scientific terms and notions in order to critically and autonomously evaluate the biochemical processes of life. APPLYED BIOLOGY: The course provides the cognitive basis for understanding the contribution of biological macromolecules in biological organization, in the functioning of the structures of living organisms and in the most relevant aspects of human biology. The course also aims to introduce the fundamental concepts of Genetics, the most common genetic diseases and their transmission modes. At the end of the course the student will be able to know and understand the fundamentals of biology also in relation to the health status of human population.

Program

------------------------
MM: BIOCHEMISTRY
------------------------
- Organic chemistry: nomenclature of organic compounds and recognition of functional groups.
- Carbohydrates: monosaccharides, disaccharides, polysaccharides.
- Proteins: amino acids, protein structure levels, peptide bond, allosteric regulation.
- Enzymes: Classification of enzymes, active site, specificity and isoenzymes, regulation of enzyme activity.
- Lipids: lipids and their functions, phospholipids, terpenes, cholesterol, lipoproteins.
- Introduction to metabolism: catabolism and anabolism, ATP and phosphocreatine, coenzymes redox, redox reactions, metabolic pathways and regulation, coupled reactions, signs of metabolism genetic defects.
- Carbohydrate metabolism: glycolysis, pentose phosphate pathway, alcoholic and lactic fermentation, Krebs cycle, gluconeogenesis, glycogenolysis and glycogen synthesis, hormone regulation, diabetes mellitus.
- Oxidative phosphorylation: mitochondrial respiratory chain, electron transport, ATP synthase.
- Lipid metabolism: beta-oxidation of fatty acids, lipid biosynthesis, fatty acid synthase, cholesterol metabolism.
- Metabolism of proteins and amino acids: transamination and oxidative deamination, glucose-alanine cycle, urea cycle.

------------------------
MM: EXPERIMENTAL BIOLOGY
------------------------
- Characteristics of the living beings. Origin of life and evolution. Cell Theory.
- Water: characteristics and biological importance.
- Eukaryotic and prokaryotic cell. Structure, organization and differences.
- Roles and functions of the cell memebrane. Transport of molecules across cell membrane. Cell junctions.
- Cell signalling.
- Cell cycle. Mitosis and Meiosis. Cell death.
- Staminal cells and tissue rigeneration.
- Organisation of DNA in chromosome. Chromatin and chromosome structure and composition.
- Chromosomes and heredity. Normal and abnormal human karyotypes.
- Molecular basis of genetic information: DNA structure, function, replication and role in heredity.
- Definition of gene. Human genome and DNA mutation.
- Informational pathway: transcription, RNA processing, genetic code, mRNA translation and protein synthesis.
- Modes of transmission of hereditary characters and Mendel’s laws. Pedigree drawing.
- Genetic diseases. Somatic mutations and cancer.
- Genomics in medicine.

Bibliography

Visualizza la bibliografia con Leganto, strumento che il Sistema Bibliotecario mette a disposizione per recuperare i testi in programma d'esame in modo semplice e innovativo.

Examination Methods

The exam consists of 2 written tests, one for each module, to be passed simultaneously, based on all the issues covered throughout the course.
To pass the exam, students must get a positive evaluation in both tests in the same exam and a global score of not less than 18/30. The final mark (/out of 30) will derive from the weighted average over credits of each single test score. Students can retire or refuse the proposed score and take the whole exam later.

Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE