Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
I sem. Oct 2, 2017 Jan 31, 2018
II sem. Mar 1, 2018 Jun 15, 2018
Exam sessions
Session From To
Sessione invernale d'esame Feb 1, 2018 Feb 28, 2018
Sessione estiva d'esame Jun 18, 2018 Jul 31, 2018
Sessione autunnale d'esame Sep 3, 2018 Sep 28, 2018
Degree sessions
Session From To
Sessione di laurea estiva Jul 13, 2018 Jul 13, 2018
Sessione di laurea autunnale Oct 22, 2018 Oct 22, 2018
Sessione di laurea invernale Mar 15, 2019 Mar 15, 2019
Holidays
Period From To
Christmas break Dec 22, 2017 Jan 7, 2018
Easter break Mar 30, 2018 Apr 3, 2018
Patron Saint Day May 21, 2018 May 21, 2018
VACANZE ESTIVE Aug 6, 2018 Aug 19, 2018

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrollment FAQs

Academic staff

A B C D G H K L M S T V

Assfalg Michael

symbol email michael.assfalg@univr.it symbol phone-number +39 045 802 7949

Astegno Alessandra

symbol email alessandra.astegno@univr.it symbol phone-number 045802 7955

Avesani Linda

symbol email linda.avesani@univr.it symbol phone-number +39 045 802 7839

Benini Anna

symbol email anna.benini@univr.it symbol phone-number 045 8027603

Bentivoglio Marina

symbol email marina.bentivoglio@univr.it symbol phone-number 045 8027158

Boaretti Marzia

symbol email marzia.boaretti@univr.it symbol phone-number 045 8027661

Bossi Alessandra Maria

symbol email alessandramaria.bossi@univr.it symbol phone-number 0458027946

Cecconi Daniela

symbol email daniela.cecconi@univr.it symbol phone-number +39 045 802 7056; Lab: +39 045 802 7087

Constantin Gabriela

symbol email gabriela.constantin@univr.it symbol phone-number 045-8027102

Corbo Vincenzo

symbol email vincenzo.corbo@univr.it symbol phone-number + 39 0458126029

Decimo Ilaria

symbol email Ilaria.decimo@univr.it symbol phone-number 045 8027509

Delledonne Massimo

symbol email massimo.delledonne@univr.it symbol phone-number 045 802 7962; Lab: 045 802 7058

Dominici Paola

symbol email paola.dominici@univr.it symbol phone-number 045 802 7966; Lab: 045 802 7956-7086

Giorgetti Alejandro

symbol email alejandro.giorgetti@univr.it symbol phone-number 045 802 7982

Krampera Mauro

symbol email mauro.krampera@univr.it symbol phone-number 0458124034

Laudanna Carlo

symbol email carlo.laudanna@univr.it symbol phone-number 045-8027689

Liptak Zsuzsanna

symbol email zsuzsanna.liptak@univr.it symbol phone-number +39 045 802 7032

Lleo'Fernandez Maria Del Mar

symbol email maria.lleo@univr.it symbol phone-number 045 8027194

Malerba Giovanni

symbol email giovanni.malerba@univr.it symbol phone-number 045/8027685

Mazzariol Annarita

symbol email annarita.mazzariol@univr.it symbol phone-number 045 8027690

Montagnana Martina

symbol email martina.montagnana@univr.it symbol phone-number +39 045 812 6698

Monti Francesca

symbol email francesca.monti@univr.it symbol phone-number 045 802 7910

Signoretto Caterina

symbol email caterina.signoretto@univr.it symbol phone-number 045 802 7195

Tagliaro Franco

symbol email franco.tagliaro@univr.it symbol phone-number 045 8124618-045 8124246

Turco Alberto

symbol email alberto.turco@univr.it symbol phone-number 0458027189

Vitulo Nicola

symbol email nicola.vitulo@univr.it symbol phone-number 0458027982

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.

1° Year

ModulesCreditsTAFSSD
One course to be chosen among the following
One course to be chosen among the following

2° Year  activated in the A.Y. 2018/2019

ModulesCreditsTAFSSD
Training
2
F
-
Final exam
40
E
-
ModulesCreditsTAFSSD
One course to be chosen among the following
One course to be chosen among the following
activated in the A.Y. 2018/2019
ModulesCreditsTAFSSD
Training
2
F
-
Final exam
40
E
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S003668

Credits

6

Language

English en

Scientific Disciplinary Sector (SSD)

MED/04 - EXPERIMENTAL MEDICINE AND PATHOPHYSIOLOGY

Period

II sem. dal Mar 1, 2018 al Jun 15, 2018.

Learning outcomes

The aim of this course is to cover a few general mechanisms of cell damage, giving information useful to understand the development of molecular pathology towards cell, tissue and organism pathology. The course covers the most important examples of damage to sub-cellular structures, particularly to the plasma membrane, describing in some details examples of alterations of transport, adhesion and signal transduction by membrane receptors. Different type of cell necrosis, factors determining regeneration or repair of injured tissues and molecular and cellular basis of reparative reactions and their pathologic consequences are also illustrated.

Program

- Introduction to mechanisms of disease: from molecular pathology to alteration of tissue and organism homeostasis.
- Adaptation to cell injury: autophagy, unfolded protein response, alterations in cell volume and number.
- Forms of cell necrosis: necrosis, apoptosis, necroptosis and nettosis.
- General aspect of tissue regeneration and repair: from the concept of labile, stable and permanent cells to recent aspects of stem cell biology.
- Causes of cell pathology: major causes and highlighting of reactive oxygen specie generation as a key cause of cell pathology. Alterations of specific genes as a cause of tumor emergence and the principal hallmarks of cancer cells.
- Alterations of mitochondrial functions as a mechanism of cell pathology: mitochondrial diseases, role of mitochondria in cell aging, mitochondria and induction of apoptosis.
- Alterations of cell membrane structure induced by bacterial toxins and general mechanism of bacterial toxin action.
- Alterations of membrane transport: examples of alterations of anion and cation transport; cystic fibrosis as an example of a monogenic disease causing multiple organ pathology; alterations of lipid transport due to ABC protein mutation (Tangier disease, sitosterolemia) and geneal aspects of lipoprotein metabolism; alterations of iron transport in chronic inflammation and emocromatosis.
- Alterations of LDL-receptor expression and function as an example of molecular pathology leading to organisms pathology: classification of lipoprotein receptors; familiar hypercholesterolemia as a genetic form of deficient expression/function of the LDL-receptor; mechanisms of regulation of LDL-receptor expression by cell cholesterol; from reduced LDL-receptor expression to atherosclerosis (role of modified LDL as a cause of development of the atherosclerotic plaque and cellular basis of atherosclerosis).
- Alterations of expression/function of adhesive receptors: general aspects of cell adhesion; integrins as the most widely expressed adhesion molecules implicated in cell-extracellular matrix interaction (classification and ligands); mechanisms of regulation of integrin adhesion (inside-out signaling).
- Adhesive interactions implicated in leukocyte recruitment into inflammatory sites: physiology and pathology.
- Adhesive interactions implicated in the function of platelets in hemostatic reaction and mechanisms of activation of platelets.
- The coagulation system, the soluble component of hemostatic reactions: mechanisms of activation and negative regulation.
- Deficit of hemostatic functions and the etiopathogenesis of thrombosis.
- Physiopathology of signal transduction: general aspects and modality of signal transduction by membrane surface receptors.
- Signal transduction by receptors with an intrinsic tyrosine kinase activity: the Ras and the PI3K pathways; downstream targets of PIP3; AKT in regulation of cell growth, survival and metabolism; receptor tyrosine kinase mutations in cancer; development of tyrosine kinase inhibitors.
- The insulin receptor: mechanisms of signal transduction; the concept of insulin resistance and alterations of insulin signal transduction in type 2 diabetes; obesity, inflammation and type 2 diabetes.
- Mechanisms of signal transduction by trimeric G protein-coupled receptors: regulation of trimeric G proteins; down-stream effectors of Galpha-GTP and beta/gamma subunit of trimeric G proteins.
- Activation of phosphoinositide-specific Phospholipases C and regulation of cytoplasmic calcium transients.
- Trimeric G protein-coupled receptors, PI3Kgamma and regulation of cell migration.
- Cytoplasmic tyrosine kinases as signal transducers: major classes of cytoplasmic tyrosine kinases; mechanisms of regulation of Src and Abl kinases; cytoplasmic tyrosine kinases in integrin outside-in signaling and regulation of cytoskeleton rearrangements and cell survival; cytoplasmic tyrosine kinases and signal transduction by immune receptors.
- Other mechanisms of signal transduction by surface receptors: signal transduction by cadherins; signal transduction by Toll-like receptors and pathogenesis of the septic shock.
- Pathology of contractile cells: muscular dystrophies; mechanisms of cardiac hypertrophy.

Reference texts
Author Title Publishing house Year ISBN Notes
Kumar V, Abbas AK, Aster JC Robbins Basic Pathology (Edizione 10) Elsevier 2018

Examination Methods

oral exam

Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE

Type D and Type F activities

Modules not yet included

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details: only in this way will you be able to receive notification of all the notices from your teachers and your secretariat via email and also via the Univr app.

Graduation

Deadlines and administrative fulfilments

For deadlines, administrative fulfilments and notices on graduation sessions, please refer to the Graduation Sessions - Science and Engineering service.

Need to activate a thesis internship

For thesis-related internships, it is not always necessary to activate an internship through the Internship Office. For further information, please consult the dedicated document, which can be found in the 'Documents' section of the Internships and work orientation - Science e Engineering service.

Final examination regulations

Students earn the Master’s degree in Molecular and Medical Biotechnology after successfully completing the final examination, for which students are required to write a dissertation in English, to be presented in front of a Graduation Committee. By writing the dissertation, students will have the opportunity to demonstrate the knowledge and skills acquired. The dissertation shall be an experimental research work on a specific topic, to be carried out in university research laboratories, or in public or private institutes recognised in the biotechnology sector.

The dissertation shall be written by the student under the guidance of a Supervisor. In order to be admitted to the final examination, the student must have acquired all CFU credits in the training activities included in the Study Plan, except those specifically awarded upon completion of the dissertation.

The Graduation Committee shall evaluate each candidate, based on their achievements throughout the entire degree programme, carefully assessing the degree of consistency between educational and professional objectives, as well as their ability for independent intellectual elaboration, critical thinking, communication skills and general cultural maturity, in relation to the objectives of the programme.

40 CFU are awarded upon completion of the Master’s degree dissertation, which can be presented either in English or in Italian. Master’s degree dissertations can be either internal (written at the University or Verona) or in collaboration with an external institution/body.

For each dissertation, a Dissertation Committee shall be established: this will include one Supervisor, one or more co-supervisors (optional), and two examiners. Any professors belonging to a department of the School of Science and Engineering or the School of Medicine and Surgery at the University of Verona may act as Supervisor. Researchers working in external research institutes, research grant holders, post-doctoral fellowship holders and PhD students may act as co-supervisors. The examiners, who must be professors of either the School of Natural Sciences and Engineering or the School of Medicine and Surgery, shall be appointed by the Graduation Committee at least 25 days before the final examination, once the student's eligibility to take the final examination has been verified.

The activities of the Dissertation Committee are not subject to official invitations and will take place by agreement between the persons concerned no later than 15 days before the graduation ceremony, at which time only the awarding of the Master’s degree will take place.

At the end of the examination, the Dissertation Committee will draw up a brief evaluation note giving a summary mark (from 0 to 8 points). This note shall be sent to the relevant Teaching and Student Services Unit, no later than the day before the graduation ceremony, for the subsequent formulation of the final grade by the Graduation Committee, which shall then award the degree.

Evaluation of the dissertation
Students will be given about 30 minutes to present their dissertation. The Dissertation Committee will evaluate the work based on the following criteria:

  1. level of in-depth analysis in relation to the most recent developments in the Molecular and Medical Biotechnologies areas;
  2. scientific and/or technological outcomes of the dissertation;
  3. student’s critical thinking;
  4. student’s experimental development;
  5. student’s ability to carry out independent work (this point will not be assessed by the examiners);
  6. value of the methodologies used;
  7. accuracy in planning and writing the dissertation;
  8. communication skills in presenting the dissertation.

Graduation mark
The graduation mark (based on a 110-point scale) is a whole value between 66/110 and 110/110 and is calculated by adding together the following elements (then rounding the result to the nearest whole number, e.g. 93.50 => 94; 86.49 => 86):

  • 1) the average of the marks gained in the modules, weighted according to CFU, converted to a 110-point scale;
  • 2) evaluation of the dissertation and the oral presentation during the final examination, based on the following methods:
    • a) a maximum of 11 points will be awarded for the presentation and the dissertation. These will count as follows: 8 points awarded by the Dissertation Committee, which will evaluate the dissertation and presentation by assigning each of the points 1-8 listed above a coefficient between 0 and 1 (fractional coefficient with one decimal place);
    • b) 3 points will be awarded by the Dissertation Committee by unanimous decision, based on the student’s curriculum vitae. Specifically, in order to award the final mark, the Committee will take into account the following: any cum laude honours obtained in the exams taken during the degree programme; participation in internships officially recognised by the University; elective modules; and the achievement of the degree in a time that is shorter than the normal duration of the degree programme. Students who are awarded less than 11 points for their dissertation may be awarded 2 extra points, if: - they have earned at least 12 CFU credits by taking part in international mobility programmes; - they graduate within the normal duration of the degree programme.
    • c) the sum of the points resulting from (a) and (b).

If the resulting score is 110/110 or above, the Graduation Committee may decide to award cum laude honours, in which case the student must have:

  • a minimum weighted average mark of 104/110 (without rounding up) or
  • a minimum weighted average mark of 102/110 (without rounding up) and must have been awarded cum laude honours in at least 3 modules during the degree programme. Under the current legislation, cum laude honours are conferred by unanimous decision of the committee.

External dissertations
An external dissertation is a work carried out in collaboration with an institution/body other than the University of Verona. In this case, the topic of the dissertation must be agreed in advance with a Supervisor from the LM-9 degree programme. In addition, the student must indicate at least one co-supervisor belonging to the external institution/body, who will support the student during the work on the dissertation. The Supervisor and the co-supervisors must be indicated in the online graduation application. The scientific outcomes of the dissertation will be available to all parties involved. In particular, the contents and results of the dissertation are to be considered public.

List of thesis proposals

theses proposals Research area
Studio delle proprietà di luminescenza di lantanidi in matrici proteiche Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry - Colloid chemistry

Attendance modes and venues

As stated in the Didactic Regulations, there is no generalised obligation of attendance. Individual lecturers are, however, free to require a minimum number of hours of attendance for eligibilitỳ for the profit exam of the teaching they teach. In such cases, attendance of teaching activities is monitored in accordance with procedures communicated in advance to students.

Part-time enrolment is permitted. Find out more on the Part-time enrolment possibilities page.

The course's teaching activities take place in the Science and Engineering area, which is composed of the buildings of Ca‘ Vignal 1, Ca’ Vignal 2, Ca' Vignal 3 and Piramide, located in the Borgo Roma cluster, and Villa Lebrecht and Villa Eugenia located in the San Floriano di Valpolicella cluster. 
Lectures are held in the classrooms of Ca‘ Vignal 1, Ca’ Vignal 2 and Ca' Vignal 3, while practical exercises take place in the teaching laboratories dedicated to the various activities.


Career management


Student login and resources


Erasmus+ and other experiences abroad