Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
I sem. Oct 2, 2017 Jan 31, 2018
II sem. Mar 1, 2018 Jun 15, 2018
Exam sessions
Session From To
Sessione invernale d'esami Feb 1, 2018 Feb 28, 2018
Sessione estiva d'esame Jun 18, 2018 Jul 31, 2018
Sessione autunnale d'esame Sep 3, 2018 Sep 28, 2018
Degree sessions
Session From To
Sessione Estiva Lauree Magistrali Jul 19, 2018 Jul 19, 2018
Sessione Autunnale Lauree Magistrali Oct 18, 2018 Oct 18, 2018
Sessione Invernale Lauree Magistrali Mar 21, 2019 Mar 21, 2019
Holidays
Period From To
Christmas break Dec 22, 2017 Jan 7, 2018
Easter break Mar 30, 2018 Apr 3, 2018
Patron Saint Day May 21, 2018 May 21, 2018
Vacanze estive Aug 6, 2018 Aug 19, 2018

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrolment FAQs

Academic staff

A B C D F G L M P S

Accordini Simone

simone.accordini@univr.it +39 045 8027657

Belussi Alberto

alberto.belussi@univr.it +39 045 802 7980

Bicego Manuele

manuele.bicego@univr.it +39 045 802 7072
Foto,  February 9, 2017

Bloisi Domenico Daniele

domenico.bloisi@univr.it

Bombieri Cristina

cristina.bombieri@univr.it 045-8027284

Bombieri Nicola

nicola.bombieri@univr.it +39 045 802 7094

Boscaini Maurizio

maurizio.boscaini@univr.it

Busato Federico

federico.busato@univr.it

Calanca Andrea

andrea.calanca@univr.it +39 045 802 7847

Cicalese Ferdinando

ferdinando.cicalese@univr.it +39 045 802 7969

Combi Carlo

carlo.combi@univr.it 045 802 7985

Constantin Gabriela

gabriela.constantin@univr.it 045-8027102

Daducci Alessandro

alessandro.daducci@univr.it +39 045 8027025

Delledonne Massimo

massimo.delledonne@univr.it 045 802 7962; Lab: 045 802 7058

Franco Giuditta

giuditta.franco@univr.it +39 045 802 7045

Giugno Rosalba

rosalba.giugno@univr.it 0458027066

Laudanna Carlo

carlo.laudanna@univr.it 045-8027689

Liptak Zsuzsanna

zsuzsanna.liptak@univr.it +39 045 802 7032

Malerba Giovanni

giovanni.malerba@univr.it 045/8027685

Manca Vincenzo

vincenzo.manca@univr.it 045 802 7981

Marcon Alessandro

alessandro.marcon@univr.it +39 045 802 7668

Maris Bogdan Mihai

bogdan.maris@univr.it +39 045 802 7074

Menegaz Gloria

gloria.menegaz@univr.it +39 045 802 7024

Perduca Massimiliano

massimiliano.perduca@univr.it +39 045 802 7984

Sala Pietro

pietro.sala@univr.it 0458027850

Salvagno Gian Luca

gianluca.salvagno@univr.it 045 8124308-0456449264

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

Modules Credits TAF SSD
Between the years: 1°- 2°
Between the years: 1°- 2°
Between the years: 1°- 2°
Other activities
2
F
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S004557

Credits

6

Scientific Disciplinary Sector (SSD)

INF/01 - INFORMATICA

Learning outcomes

Knowledge and understanding
The course is designed to first recall basic concepts of traditional computational models, such as formal languages and automata, and then present several models of bio-inspired computing, including bio-molecular algorithms. Main models of natural computing are presented, in terms of computational processes observed in and inspired by nature.

Applying knowledge and understanding
During the course students will aquire the following competences:
Applying basic notions of discrete mathematics (sets, multisets, sequences, trees, graphs, induction, grammars and finite automata) to explain a few computational methods both to process genomic information and to investigate metabolic networks.

Making judgements
Students will develop the required skills in order to be autonomous in the following tasks:
- choose and processing data in large genomic contexts;
- choose the appropriate methodologies and tools for represent biological information in the context of discrete biological models.

Communication skills
The student will learn how to address the correct and appropriate methods and languages for communicating
problems and solutions in the field of computationaql genomics and of biological dynamics. The course aims at developing the ability of the student both to master notions of discrete structures and dynamics, and to deepen his/her notion of Turing computation, in order to extend it to informational processes involving either natural or bio-inspired algorithms. Student's knowledge of all the topics explained in class will be tested at the exam, along with his/her learning and understanding skills.


Lifelong learning skills
Introduction to natural computing, biological algorithms, and life algorithmic strategies.
Basic notions of discrete mathematics and of formal language theory (Chomsky's hierarchy, automata, and computability).
Elements of information theory (information sources, codes, entropy, and entropy divergences, typical sequences, first and second Shannon's theory).
Methods to extract and analyze genomic dictionaries.
Genomic profiles and distributions of recurrent motifs.
Software IGtools to analyze and visualize genomic data.
Computational models of bio-molecular processes, such as DNA self-assembly and membrane computing.
DNA computing and bio-complexity of bio-algorithms.
DNA algorithms to solve NP-complete problems.
MP grammars, networks, and metabolic dynamics.

Educational offer 2022/2023

The details (teacher, program, exam methods, etc.) will be published in the academic year of delivery of the course. To consult the course sheet of a previous academic year, select the teaching plan of an academic year of enrollment prior to yours.

Natural Computing (2022/2023)

Type D and Type F activities

Modules not yet included

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details.

Graduation

For schedules, administrative requirements and notices on graduation sessions, please refer to the Graduation Sessions - Science and Engineering service.

Attendance

As stated in point 25 of the Teaching Regulations for the A.Y. 2021/2022, attendance at the course of study is not mandatory.
Please refer to the Crisis Unit's latest updates for the mode of teaching.

Career management


Area riservata studenti