Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Study Plan
The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.
1° Year
Modules | Credits | TAF | SSD |
---|
1 module between the following
1 module among the following
1 module among the following
1 module between the following
1 module between the following
2° Year activated in the A.Y. 2021/2022
Modules | Credits | TAF | SSD |
---|
1 module between the following
1 module among the following
1 module between the following
Modules | Credits | TAF | SSD |
---|
1 module between the following
1 module among the following
1 module among the following
1 module between the following
1 module between the following
Modules | Credits | TAF | SSD |
---|
1 module between the following
1 module among the following
1 module between the following
Modules | Credits | TAF | SSD |
---|
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
Nanomaterials for Biotechnology and Green Chemistry (2021/2022)
Teaching code
4S008287
Credits
6
Language
Italian
Scientific Disciplinary Sector (SSD)
CHIM/03 - GENERAL AND INORGANIC CHEMISTRY
The teaching is organized as follows:
teoria
laboratorio
Learning outcomes
The course aims to provide students with the theoretical and experimental tools for the preparation, study, development and application of nanomaterials in the fields of Biotechnology and Green Chemistry, for industrial, agro-food and biomedical applications. Properly activated and functionalized inorganic based nanomaterials with specific properties, such as diagnostics and sensorial, energy conversion and storage, transport of materials or substances, catalytic activity for production processes and transformation of resources, will be considered, in a perspective of sustainability development. The course also includes some laboratory experiences to provide practical manual skills as well as complementary competences to further refine the critical and analytical abilities for an optimal design, preparation, chemico-physical characterization and application of functional inorganic based nanomaterials in the fields of Biotechnology and Green Chemistry
Program
THEORY
Nanomaterials: definition and peculiarities. Typology of nanomaterials (organic, inorganic, organic-inorganic hybrids).
Importance of the surface in nanomaterials. Surface-influenced phenomena. Thermodynamic aspect of nanometric phases. Hierarchical nanostructures.
1D and 2D nanomaterials. Mention to band theory. Semiconductor nanomaterials and Quantum Dots: electronic and spectroscopic properties.
Fluoride based nanomaterials activated with luminescent lanthanide ions. Luminescent Carbon Dots.
Noble metal nanoparticles and their plasmonic properties. Oxide based nanomaterials for photocatalysis. Magnetic nanoparticles. Organic-inorganic nanocomposites.
Multifunctional nanostructures activated by external stimuli for diagnostics, drug delivery and for curative treatments in nanomedicine.
Synthesis of nanoparticles in solution using "green chemistry" methods (coprecipitation, sol-gel, solvothermal, inverse micelles and ionic liquids). Microwave assisted synthesis. Strategies for obtaining different morphologies (nanorods, core@shell), porosity and size.
Surface functionalization of inorganic nanoparticles.
Chemical-physical characterization of nanostructures (structural, morphological, colloidal analysis). Spectroscopic investigation in ultraviolet, visible and infrared on luminescent nanoparticles. Investigation of the vibrational properties of the nanoparticles with infrared spectroscopy.
LABORATORY EXPERIENCES
1) Synthesis of metal nanostructures (Au, Ag) in solution and their spectroscopic characterization in the optical region (UV and visible). Study of the colloidal properties.
2) Preparation of TiO2 and Fe3O4 nanoparticles in solution with a microwave assisted reaction. Study of the colloidal properties. Structural analysis by X-ray diffraction.
3) Preparation of CaF2 and SrF2 nanoparticles functionalized with luminescent lanthanide ions in aqueous solution and their coating with a silica shell using the sol-gel technique. Chemico-physical characterization (structural, morphological, colloidal) of the nanoparticles. Study of their emission properties in the visible upon laser excitation in the near infrared region.
Bibliography
Examination Methods
The oral examination will include the exposition of a bibliographic paper on a subject of the Course and questions on the topics of the Course about the theoretical part as well as the examples, exercises and laboratory experiences. Particular attention will be devoted as well to the knowledge of the the concepts, methods, experimental setups and techniques used in laboratory experiences.
For both attending and not attending students the oral examination will cover all the topics discussed in the theoretical part, in the examples and exercises as well as in the laboratory experiences.
Written reports about the the laboratory experiences are required, describing the principles, the used experimental methods and the results obtained during the lab experiences. The reports have to be loaded to the Moodle platform as soon as the lab experiences will be completed.