Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
I semestre Oct 1, 2020 Jan 29, 2021
II semestre Mar 1, 2021 Jun 11, 2021
Exam sessions
Session From To
Sessione invernale d'esame Feb 1, 2021 Feb 26, 2021
Sessione estiva d'esame Jun 14, 2021 Jul 30, 2021
Sessione autunnale d'esame Sep 1, 2021 Sep 30, 2021
Degree sessions
Session From To
Sessione estiva di laurea Jul 13, 2021 Jul 13, 2021
Sessione autunnale di laurea Oct 12, 2021 Oct 12, 2021
Sessione invernale di laurea Mar 10, 2022 Mar 10, 2022
Holidays
Period From To
Festa dell'Immacolata Dec 8, 2020 Dec 8, 2020
Vacanze Natalizie Dec 24, 2020 Jan 3, 2021
Epifania Jan 6, 2021 Jan 6, 2021
Vacanze Pasquali Apr 2, 2021 Apr 5, 2021
Festa del Santo Patrono May 21, 2021 May 21, 2021
Festa della Repubblica Jun 2, 2021 Jun 2, 2021
Vacanze estive Aug 9, 2021 Aug 15, 2021

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrollment FAQs

Academic staff

B C D F L P R S V Z

Ballottari Matteo

symbol email matteo.ballottari@univr.it symbol phone-number 045 802 7823

Bassi Roberto

symbol email roberto.bassi@univr.it symbol phone-number 045 8027916

Bolzonella David

symbol email david.bolzonella@univr.it symbol phone-number 045 802 7965

Bossi Alessandra Maria

symbol email alessandramaria.bossi@univr.it symbol phone-number 0458027946

Calabrese Bernardo

symbol email bernardo.calabrese@univr.it

Chignola Roberto

symbol email roberto.chignola@univr.it symbol phone-number 045 802 7953

Cozza Vittoria

symbol email vittoria.cozza@univr.it

Dal Corso Giovanni

symbol email giovanni.dalcorso@univr.it symbol phone-number (0039) 045 802 7867

Fiammengo Roberto

symbol email roberto.fiammengo@univr.it symbol phone-number 0458027038

Frison Nicola

symbol email nicola.frison@univr.it symbol phone-number 045 802 7857

Furini Antonella

symbol email antonella.furini@univr.it symbol phone-number 045 802 7950; Lab: 045 802 7043

Fusco Salvatore

symbol email salvatore.fusco@univr.it symbol phone-number Office: +39 045 802 7954 Lab: +39 045 802 7086

Lampis Silvia

symbol email silvia.lampis@univr.it symbol phone-number 045 802 7095

Perduca Massimiliano

symbol email massimiliano.perduca@univr.it symbol phone-number +39 045 8027984

Piccinelli Fabio

symbol email fabio.piccinelli@univr.it symbol phone-number +39 045 802 7097

Rossato Marzia

symbol email marzia.rossato@univr.it symbol phone-number +39 045 802 7800

Speghini Adolfo

symbol email adolfo.speghini@univr.it symbol phone-number +39 045 8027900

Vandelle Elodie Genevieve Germaine

symbol email elodiegenevieve.vandelle@univr.it symbol phone-number 0458027826

Vitulo Nicola

symbol email nicola.vitulo@univr.it symbol phone-number 0458027982

Zaccone Claudio

symbol email claudio.zaccone@univr.it symbol phone-number +39 045 8027864

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.

1° Year

ModulesCreditsTAFSSD
1 module between the following
1 module between the following
6
B
ING-IND/25
1 module between the following

2° Year  activated in the A.Y. 2021/2022

ModulesCreditsTAFSSD
1 module between the following
Training
3
F
-
Final exam
36
E
-
activated in the A.Y. 2021/2022
ModulesCreditsTAFSSD
1 module between the following
Training
3
F
-
Final exam
36
E
-
Modules Credits TAF SSD
Between the years: 1°- 2°
English B2 level
3
F
-
Between the years: 1°- 2°

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S008296

Credits

6

Language

Italian

Scientific Disciplinary Sector (SSD)

AGR/07 - AGRICULTURAL GENETICS

Period

I semestre dal Oct 1, 2020 al Jan 29, 2021.

Learning outcomes

Objective of the course is to provide to students the main knowledge concerning no-food crops for industrial production. A significant part of the course will concern breeding, highlighting both traditional and genetic engineering techniques and main goals associated to each no-food culture. In a following moment, the main industrial crops (e.g. cultures for production of oil, sugars, industrial compounds, etc.) will be considered, shedding light on their genetics, responses to abiotic stresses and adaptability. The course will help students to acquire the required knowledge to develop no-food plant resources, well-embedded into a system of eco-sustainable agriculture.

Program

1. Introduction
1.1. Reference to the meaning of circular economy and sustainable agriculture;
1.2. Differentiation between food and non-food agriculture; importance of non-food agriculture for sustainability.
1.3. Issues related to the development of non-food crops.

2. Plant breeding
2.1. Definition of plant breeding and General and specific targets of plant breeding;
2.2. Methodologies applied to plant species: conventional approach, crossbreeding and selection; the role of in vitro cultures and mutagenesis: mutation breeding. Molecular markers and their application in plant breeding. The study of natural populations - mapping by association and the concept of linkage disequilibrium - (GWAS) application to industrial plant species.
2.3. Biotechnology and plant breeding - consolidated methods (physico-chemical methods; biolistic method; transformation mediated by Rhizobium radiobacter) and new methods (genome editing and molecular breeding).

3. Non-food crops
For each category, examples of species of economic interest, information on plant genetics, variety availability, the main aspects of genetic improvement and the progress of traditional and biotechnological breeding will be considered.
3.1. Energy crops and biofuels (biofuels and bioenergy crops): Jatropha, etc.
3.2. Oil crops (oil crops): eg, Brassicacea.
3.3. Fiber crops (fiber crops): e.g. cotton, linen, hemp, Arundo.
3.4. Biomass coppices (short rotation forestry): poplar, eucalyptus, black locust, willow.
3.5. Sugar crops (carbohydrate crops): sugar cane, sugar beet.
3.6. Plants as bioreactors: production of molecules and proteins of pharmaceutical and industrial interests.

Reference texts
Author Title Publishing house Year ISBN Notes
Gianni Barcaccia, Mario Falcinelli Genetica e genomica (Edizione 2) Liguori 2012 8820737426
Gianni Barcaccia, Mario Falcinelli Genetica e genomica vol III Liguori 2007 8820737434
Albertini Emidio Frusciante Luigi Lorenzetti Franco Rosellini Daniele Russi Luigi Tuberosa Roberto Veronesi Fabio Miglioramento genetico delle piante agrarie Edagricole-New Business Media 2020 8850655096

Examination Methods

Examinations will consist in oral presentations regarding the topics covered during the course. If the health situation allows it easily, the exam could be completed in the written form.

Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE

Type D and Type F activities

Le attività formative in ambito D o F comprendono gli insegnamenti impartiti presso l'Università di Verona o periodi di stage/tirocinio professionale.
Nella scelta delle attività di tipo D, gli studenti dovranno tener presente che in sede di approvazione si terrà conto della coerenza delle loro scelte con il progetto formativo del loro piano di studio e dell'adeguatezza delle motivazioni eventualmente fornite.

 

II semestre From 3/1/21 To 6/11/21
years Modules TAF Teacher
1° 2° Python programming language D Vittoria Cozza (Coordinator)

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details: only in this way will you be able to receive notification of all the notices from your teachers and your secretariat via email and also via the Univr app.

Graduation

Deadlines and administrative fulfilments

For deadlines, administrative fulfilments and notices on graduation sessions, please refer to the Graduation Sessions - Science and Engineering service.

Need to activate a thesis internship

For thesis-related internships, it is not always necessary to activate an internship through the Internship Office. For further information, please consult the dedicated document, which can be found in the 'Documents' section of the Internships and work orientation - Science e Engineering service.

Final examination regulations

List of thesis proposals

theses proposals Research area
Valutazione dell'applicazione di nanoparticelle biogeniche per il controllo del cancro batterico del kiwi AGRICULTURE - AGRICULTURE
Valutazione dell'applicazione di nanoparticelle biogeniche per il controllo del cancro batterico del kiwi APPLICATIONS OF LIFE SCIENCES - APPLICATIONS OF LIFE SCIENCES
Valorizzazione di scarti agroindustriali mediante fermentazione termofila per la produzione di acidi organici come precursori chimici di polimeri Applied biotechnology (non-medical), bioreactors, applied microbiology - Applied biotechnology (non-medical), bioreactors, applied microbiology
Valutazione dell'applicazione di nanoparticelle biogeniche per il controllo del cancro batterico del kiwi Applied biotechnology (non-medical), bioreactors, applied microbiology - Applied biotechnology (non-medical), bioreactors, applied microbiology
Immobilizzazione di enzimi d’interesse industriale su nanoparticelle biomimetiche magnetiche Applied Life Sciences and Non-Medical Biotechnology: Applied plant and animal sciences; food sciences; forestry; industrial, environmental and non-medical biotechnologies, nanobiotechnology, bioengineering; synthetic and chemical biology; biomimetics; bioremediation - Biomimetics
Immobilizzazione di enzimi d’interesse industriale su nanoparticelle biomimetiche magnetiche Applied Life Sciences and Non-Medical Biotechnology: Applied plant and animal sciences; food sciences; forestry; industrial, environmental and non-medical biotechnologies, nanobiotechnology, bioengineering; synthetic and chemical biology; biomimetics; bioremediation - Non-medical biotechnology and genetic engineering (including transgenic organisms, recombinant proteins, biosensors, bioreactors, microbiology)
Immobilizzazione di enzimi d’interesse industriale su nanoparticelle biomimetiche magnetiche Chemical engineering, technical chemistry - Chemical engineering, technical chemistry
Effetto delle condizioni operative applicate al processo di digestione anaerobica su produzione di biogas e stabilità del carbonio organico del digestato Earth System Science: Physical geography, geology, geophysics, atmospheric sciences, oceanography, climatology, cryology, ecology, global environmental change, biogeochemical cycles, natural resources management - Biogeochemistry, biogeochemical cycles, environmental chemistry
Influenza dalla variazione stagionale del feedstock sulla produzione di biogas e sulla stabilità del carbonio organico presente nel digestato prodotto Earth System Science: Physical geography, geology, geophysics, atmospheric sciences, oceanography, climatology, cryology, ecology, global environmental change, biogeochemical cycles, natural resources management - Biogeochemistry, biogeochemical cycles, environmental chemistry
Valorizzazione di scarti agroindustriali mediante fermentazione termofila per la produzione di acidi organici come precursori chimici di polimeri Environmental biotechnology, bioremediation, biodegradation - Environmental biotechnology, bioremediation, biodegradation
Bilanci di massa e di materia in digestori anaerobici alimentati con residui agricoli e zootecnici. Products and Processes Engineering: Product design, process design and control, construction methods, civil engineering, energy processes, material engineering - Chemical engineering, technical chemistry
Studio della composizione chimica e della stabilità termica di poliidrossialcanoati ottenuti da diverse matrici ambientali. Products and Processes Engineering: Product design, process design and control, construction methods, civil engineering, energy processes, material engineering - Chemical engineering, technical chemistry
Valorizzazione di scarti agroindustriali mediante fermentazione termofila per la produzione di acidi organici come precursori chimici di polimeri Products and Processes Engineering: Product design, process design and control, construction methods, civil engineering, energy processes, material engineering - Chemical engineering, technical chemistry
Immobilizzazione di enzimi d’interesse industriale su nanoparticelle biomimetiche magnetiche Products and Processes Engineering: Product design, process design and control, construction methods, civil engineering, energy processes, material engineering - Materials engineering (metals, ceramics, polymers, composites, etc.)
Valorizzazione di scarti agroindustriali mediante fermentazione termofila per la produzione di acidi organici come precursori chimici di polimeri Products and Processes Engineering: Product design, process design and control, construction methods, civil engineering, energy processes, material engineering - Production technology, process engineering
Studio delle proprietà di luminescenza di lantanidi in matrici proteiche Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry - Colloid chemistry
Multifunctional organic-inorganic hybrid nanomaterials for applications in Biotechnology and Green Chemistry Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry - New materials: oxides, alloys, composite, organic-inorganic hybrid, nanoparticles

Attendance modes and venues

As stated in the Didactic Regulations, there is no generalised obligation of attendance. Individual lecturers are, however, free to require a minimum number of hours of attendance for eligibilitỳ for the profit exam of the teaching they teach. In such cases, attendance of teaching activities is monitored in accordance with procedures communicated in advance to students.

Part-time enrolment is permitted. Find out more on the Part-time enrolment possibilities page.

The course's teaching activities take place in the Science and Engineering area, which is composed of the buildings of Ca‘ Vignal 1, Ca’ Vignal 2, Ca' Vignal 3 and Piramide, located in the Borgo Roma cluster, and Villa Lebrecht and Villa Eugenia located in the San Floriano di Valpolicella cluster. 
Lectures are held in the classrooms of Ca‘ Vignal 1, Ca’ Vignal 2 and Ca' Vignal 3, while practical exercises take place in the teaching laboratories dedicated to the various activities.


Career management


Student login and resources


Erasmus+ and other experiences abroad