Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Academic calendar
The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.
Course calendar
The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..
Period | From | To |
---|---|---|
I semestre | Oct 1, 2019 | Jan 31, 2020 |
II semestre | Mar 2, 2020 | Jun 12, 2020 |
Session | From | To |
---|---|---|
Sessione invernale d'esame | Feb 3, 2020 | Feb 28, 2020 |
Sessione estiva d'esame | Jun 15, 2020 | Jul 31, 2020 |
Sessione autunnale d'esame | Sep 1, 2020 | Sep 30, 2020 |
Period | From | To |
---|---|---|
Festa di Ognissanti | Nov 1, 2019 | Nov 1, 2019 |
Festa dell'Immacolata | Dec 8, 2019 | Dec 8, 2019 |
Vacanze di Natale | Dec 23, 2019 | Jan 6, 2020 |
Vacanze di Pasqua | Apr 10, 2020 | Apr 14, 2020 |
Festa della Liberazione | Apr 25, 2020 | Apr 25, 2020 |
Festa del lavoro | May 1, 2020 | May 1, 2020 |
Festa del Santo Patrono | May 21, 2020 | May 21, 2020 |
Festa della Repubblica | Jun 2, 2020 | Jun 2, 2020 |
Vacanze estive | Aug 10, 2020 | Aug 23, 2020 |
Exam calendar
Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.
Academic staff
Study Plan
The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.
1° Year
Modules | Credits | TAF | SSD |
---|
2° Year activated in the A.Y. 2020/2021
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
Bioenergy and Biofuels (2020/2021)
Teaching code
4S008300
Teacher
Coordinator
Credits
6
Language
Italian
Scientific Disciplinary Sector (SSD)
BIO/04 - PLANT PHYSIOLOGY
Period
I semestre dal Oct 1, 2020 al Jan 29, 2021.
Learning outcomes
The course aims to provide bases on the definition and characteristics of fuels of different origin and intended use, focusing on innovative biotechnological solutions for the production of biofuels. Among these, the bio-fuels of I, II, III and IV generation are particularly defined, including bioethanol, biogas, biodiesel and bio-hydrogen and the implications of their use for production processes and transport as well as the consequences for the environment. The course is divided between a general part that refers to bio-fuels from cultivated plants, yeasts and bacteria and a second part dedicated to unicellular algae, in which their biological characteristics and the methods for genetic and molecular biological analysis are described. Finally, examples are given for the use of these methods for the production of different types of bio-fuels and other products with high added value.
Program
The teaching module “biofuels” supplies basis for the identification and properties of fuels from different sources. Among these biofuels are considered in detail, namely bio-ethanol, bio.diesel and bio-hydrogen and the consequence of their use for environmental, production issues and vehicle traction. For each the production processes presently in use are defined as well as the biotechnological approach to their improvement with a major reference to crops, which are in common with food-producing processes (first generation biofuels). Furthermore, alternative sources of biomass are considered, having a lower dependence on food-producing processes. Particular emphasis is dedicated to unicellular algae and the procedures for quantitative and qualitative improvement of algal biomass through classical genetics and recombinant DNA procedures towards definition of a biofuel productive process economically sound and with low environmental impact.
1) definition of biofuels, biomass of origin. Bio-gas, bio-ethanol, bio-diesel and bio-hydrogen
2) Present procedures of production and legislation
3) Energy balance of photosynthetic organisms, upper limits of productivity, factors of loss of productivity, comparison with photovoltaaics.
4) Crops as biomass for biofuels. Present state and perspectives for improvement in crops and forst organisms..
5) Unicellular algae: advantages and disadvantages with respect to crops.
6) Biodiesel from algae
7) bio-hydrogen from algae
8) Molecular genetics in unicellular algae model system and productive systems. Procedures limiting engineering of algae.
9) Growth in photobioreactors: different architectures and limits for productivity.
10) Algae as CO2 scavengers.
11) Metabolic engineering: light use efficiency.
12) lipid metabolism
13) electron transport and hydrogenases.
Author | Title | Publishing house | Year | ISBN | Notes |
---|---|---|---|---|---|
Anju Krivov | Bioenergy 1st Edition (Edizione 1) | 2014 | 9780124081208 |
Examination Methods
Method of examination:
The exam will be organized in two parts:
a) Written with a series of multiple choice questions followed by an open-text question in which it describes a strategy for the production of a bio-fuel defined each time.
b) Oral in which the topics covered in class are discussed. During the course, articles will be provided on which to prepare presentations by the different students. Each presentation will be assigned a score to be added to that achieved in the written exam.
Type D and Type F activities
years | Modules | TAF | Teacher |
---|---|---|---|
1° | Python programming language | D |
Maurizio Boscaini
(Coordinator)
|
Career prospects
Module/Programme news
News for students
There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details: only in this way will you be able to receive notification of all the notices from your teachers and your secretariat via email and also via the Univr app.
Graduation
Deadlines and administrative fulfilments
For deadlines, administrative fulfilments and notices on graduation sessions, please refer to the Graduation Sessions - Science and Engineering service.
Need to activate a thesis internship
For thesis-related internships, it is not always necessary to activate an internship through the Internship Office. For further information, please consult the dedicated document, which can be found in the 'Documents' section of the Internships and work orientation - Science e Engineering service.
Final examination regulations
List of thesis proposals
theses proposals | Research area |
---|---|
Valutazione dell'applicazione di nanoparticelle biogeniche per il controllo del cancro batterico del kiwi | AGRICULTURE - AGRICULTURE |
Valutazione dell'applicazione di nanoparticelle biogeniche per il controllo del cancro batterico del kiwi | APPLICATIONS OF LIFE SCIENCES - APPLICATIONS OF LIFE SCIENCES |
Valorizzazione di scarti agroindustriali mediante fermentazione termofila per la produzione di acidi organici come precursori chimici di polimeri | Applied biotechnology (non-medical), bioreactors, applied microbiology - Applied biotechnology (non-medical), bioreactors, applied microbiology |
Valutazione dell'applicazione di nanoparticelle biogeniche per il controllo del cancro batterico del kiwi | Applied biotechnology (non-medical), bioreactors, applied microbiology - Applied biotechnology (non-medical), bioreactors, applied microbiology |
Immobilizzazione di enzimi d’interesse industriale su nanoparticelle biomimetiche magnetiche | Applied Life Sciences and Non-Medical Biotechnology: Applied plant and animal sciences; food sciences; forestry; industrial, environmental and non-medical biotechnologies, nanobiotechnology, bioengineering; synthetic and chemical biology; biomimetics; bioremediation - Biomimetics |
Immobilizzazione di enzimi d’interesse industriale su nanoparticelle biomimetiche magnetiche | Applied Life Sciences and Non-Medical Biotechnology: Applied plant and animal sciences; food sciences; forestry; industrial, environmental and non-medical biotechnologies, nanobiotechnology, bioengineering; synthetic and chemical biology; biomimetics; bioremediation - Non-medical biotechnology and genetic engineering (including transgenic organisms, recombinant proteins, biosensors, bioreactors, microbiology) |
Immobilizzazione di enzimi d’interesse industriale su nanoparticelle biomimetiche magnetiche | Chemical engineering, technical chemistry - Chemical engineering, technical chemistry |
Effetto delle condizioni operative applicate al processo di digestione anaerobica su produzione di biogas e stabilità del carbonio organico del digestato | Earth System Science: Physical geography, geology, geophysics, atmospheric sciences, oceanography, climatology, cryology, ecology, global environmental change, biogeochemical cycles, natural resources management - Biogeochemistry, biogeochemical cycles, environmental chemistry |
Influenza dalla variazione stagionale del feedstock sulla produzione di biogas e sulla stabilità del carbonio organico presente nel digestato prodotto | Earth System Science: Physical geography, geology, geophysics, atmospheric sciences, oceanography, climatology, cryology, ecology, global environmental change, biogeochemical cycles, natural resources management - Biogeochemistry, biogeochemical cycles, environmental chemistry |
Valorizzazione di scarti agroindustriali mediante fermentazione termofila per la produzione di acidi organici come precursori chimici di polimeri | Environmental biotechnology, bioremediation, biodegradation - Environmental biotechnology, bioremediation, biodegradation |
Bilanci di massa e di materia in digestori anaerobici alimentati con residui agricoli e zootecnici. | Products and Processes Engineering: Product design, process design and control, construction methods, civil engineering, energy processes, material engineering - Chemical engineering, technical chemistry |
Studio della composizione chimica e della stabilità termica di poliidrossialcanoati ottenuti da diverse matrici ambientali. | Products and Processes Engineering: Product design, process design and control, construction methods, civil engineering, energy processes, material engineering - Chemical engineering, technical chemistry |
Valorizzazione di scarti agroindustriali mediante fermentazione termofila per la produzione di acidi organici come precursori chimici di polimeri | Products and Processes Engineering: Product design, process design and control, construction methods, civil engineering, energy processes, material engineering - Chemical engineering, technical chemistry |
Immobilizzazione di enzimi d’interesse industriale su nanoparticelle biomimetiche magnetiche | Products and Processes Engineering: Product design, process design and control, construction methods, civil engineering, energy processes, material engineering - Materials engineering (metals, ceramics, polymers, composites, etc.) |
Valorizzazione di scarti agroindustriali mediante fermentazione termofila per la produzione di acidi organici come precursori chimici di polimeri | Products and Processes Engineering: Product design, process design and control, construction methods, civil engineering, energy processes, material engineering - Production technology, process engineering |
Studio delle proprietà di luminescenza di lantanidi in matrici proteiche | Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry - Colloid chemistry |
Multifunctional organic-inorganic hybrid nanomaterials for applications in Biotechnology and Green Chemistry | Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry - New materials: oxides, alloys, composite, organic-inorganic hybrid, nanoparticles |
Attendance modes and venues
As stated in the Didactic Regulations, there is no generalised obligation of attendance. Individual lecturers are, however, free to require a minimum number of hours of attendance for eligibilitỳ for the profit exam of the teaching they teach. In such cases, attendance of teaching activities is monitored in accordance with procedures communicated in advance to students.
Part-time enrolment is permitted. Find out more on the Part-time enrolment possibilities page.
The course's teaching activities take place in the Science and Engineering area, which is composed of the buildings of Ca‘ Vignal 1, Ca’ Vignal 2, Ca' Vignal 3 and Piramide, located in the Borgo Roma cluster, and Villa Lebrecht and Villa Eugenia located in the San Floriano di Valpolicella cluster.
Lectures are held in the classrooms of Ca‘ Vignal 1, Ca’ Vignal 2 and Ca' Vignal 3, while practical exercises take place in the teaching laboratories dedicated to the various activities.