Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Type D and Type F activities

The educational activities of type D are chosen by the student, those of type F are further knowledge useful for entering the world of work (internships, soft skills, project works, etc.). According to the Didactic Regulations of the Course, some activities can be chosen and included autonomously in the booklet, others must be approved by a special committee to verify their consistency with the study plan. Type D or F educational activities can be covered by the following activities.

1. Teachings taught at the University of Verona.

Include the teachings listed below and/or in the Course Catalogue (which can also be filtered by language of delivery via Advanced Search).

Booklet entry mode: if the teaching is included among those listed below, the student can include it autonomously during the period in which the study plan is open; otherwise, the student must submit a request to the Secretariat, sending the form to carriere.scienze@ateneo.univr.it during the period indicated.

2. CLA certificate or language equivalency.

In addition to those required by the curriculum, the following are recognized for those matriculated from A.Y. 2021/2022:

  • English language: 3 CFUs are recognized for each level of proficiency above the one required by the course of study (if not already recognized in the previous course of study).
  • Other languages and Italian for foreigners: 3 cfu are recognized for each proficiency level starting from A2 (if not already recognized in the previous study cycle).

These cfu will be recognized, up to a maximum of 6 cfu in total, as type F if the teaching plan allows, or as type D. Additional elective credits for language knowledge may be recognized only if consistent with the student's educational project and if adequately justified.

Those enrolled until A.Y. 2020/2021 should consult the information found here.

Booklet entry mode: request the certificate or equivalency to the CLA and send it to the Student Secretariat - Careers for career entry of the exam, via email: carriere.scienze@ateneo.univr.it

3. Soft skills

Discover the training paths promoted by the University's TALC - Teaching and learning center, intended for students regularly enrolled in the academic year of course delivery https://talc.univr.it/it/competenze-trasversali

Booklet entry mode: the teaching is not expected to be included in the curriculum. Only after obtaining the Open Badge, the CFUs in the booklet will be automatically validated. The registration of CFUs in career is not instantaneous, but there will be some technical time to wait.  

4. CONTAMINATION LAB 

The Contamination Lab Verona (CLab Verona) is an experiential course with modules on innovation and enterprise culture that offers the opportunity to work in teams with students from all areas to solve challenges set by companies and organisations.  

Upon completion of a CLab, students will be entitled to receive 6 CFU (D- or F-type credits).  

Find out more:  https://www.univr.it/clabverona 

PLEASE NOTE: In order to be admitted to any teaching activities, including those of your choice, you must be enrolled in the academic year in which the activities in question are offered. Students who are about to graduate in the December and April sessions are therefore advised NOT to undertake extracurricular activities in the new academic year in which they are not enrolled, as these graduation sessions are valid for students enrolled in the previous academic year. Therefore, students who undertake an activity in an academic year in which they are not enrolled will not be granted CFU credits.  

5. Stage/internship period

In addition to the CFUs required by the curriculum (check carefully what is indicated on the Didactic Regulations): here information on how to activate the internship. 

Check in the regulations which activities can be Type D and which can be Type F.

Teachings and other activities that can be entered autonomously in the booklet

Academic year:

Teaching code

4S009012

Credits

6

Coordinator

Nicola Bombieri

Language

English en

Also offered in courses:

Scientific Disciplinary Sector (SSD)

INF/01 - INFORMATICS

Courses Single

Authorized

The teaching is organized as follows:

Parte II

Credits

3

Period

Semester 1

Academic staff

Nicola Bombieri

Parte I

Credits

3

Period

Semester 1

Academic staff

Nicola Bombieri

Learning objectives

The course aims at providing theoretical and practical knowledge about programming and analysis of advanced computing architectures, with emphasis on parallel and heterogeneous embedded platforms. At the end of the course the student will have to demonstrate the ability to apply the knowledge necessary to identify techniques for embedded software programming for edge computing, also in a research context, through analysis of application efficiency and by considering both functional and non-functional design constraints (correctness, performance, power consumption, energy efficiency). This knowledge will allow the student to analyze performance and perform code profiling, by identifying critical zone and the corresponding optimizations by considering the architectural characteristics of the platform. At the end of the course, the students will demonstrate the ability to compare parallel patterns for embedded software development and to select the best one by considering the use case. By defining the structure of the optimized code, the student will demonstrate the ability to identify the proper architectural choices, by considering the target application and platform contexts. Finally, the student will have to demonstrate the ability to continue the study autonomously in the field of the parallel programming languages and techniques for the software development for parallel and heterogeneous embedded platforms.

Prerequisites and basic notions

Basic programmoing in C

Program

Theory (32 h):
-) Intro to advanced computer architectures.
-) Parallel programming models and programming models for programmable edge devices.
-) Performance measurements and analysis, Amdhal law, metrics.
-) Power consumption and energy efficiency: programming models
-) Data-level parallelism: GPU e CPU-iGPU architectures
-) Pipeline: basic and advanced concepts
-) Instruction-level parallelism (ILP).
-) Branch prediction, static scheduling and speculation.
-) Memory hierarchy: basic and advanced concepts
-) Advanced techniques for cache performance optimization.
-) Thread-level parallelism (TLP).
-) Cache coherency in shared-memory architectures, Snoopy protocols.
-) Edge computing and Deep Learning at the edge
Lab (24 h):
-) Programming heterogeneous architectures (CPU-iGPU)
-) Parallel compilers for multi-core architectures
-) CNN-based inference and transfer learning at the edge

Bibliography

Visualizza la bibliografia con Leganto, strumento che il Sistema Bibliotecario mette a disposizione per recuperare i testi in programma d'esame in modo semplice e innovativo.

Didactic methods

Frontal lessons for theory
Frontal lessons and code development for lab

Learning assessment procedures

Exercises with open answers for theory, code development for lab. Total time: 2 or 2.5 h.

Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE

Evaluation criteria

To pass the exam, the student has to demonstrate:
- he/she has understood the principles related to the advanced computer architecture programming
- he/she is able to describe the concepts in a clear and exhaustive way without digressions
- he/she is able to apply the acquired knowledge to solve application scenarios described by means of exercises, questions and projects.

Criteria for the composition of the final grade

The exam consists of a written test, which contains questions with multiple answers, questions with open answers, and exercises related both the theoretical and lab modules. The student can elaborate a project assigned by the teacher for a bonus (up to +5 points).

Exam language

English