Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Type D and Type F activities

The educational activities of type D are chosen by the student, those of type F are further knowledge useful for entering the world of work (internships, soft skills, project works, etc.). According to the Didactic Regulations of the Course, some activities can be chosen and included autonomously in the booklet, others must be approved by a special committee to verify their consistency with the study plan. Type D or F educational activities can be covered by the following activities.

1. Teachings taught at the University of Verona.

Include the teachings listed below and/or in the Course Catalogue (which can also be filtered by language of delivery via Advanced Search).

Booklet entry mode: if the teaching is included among those listed below, the student can include it autonomously during the period in which the study plan is open; otherwise, the student must submit a request to the Secretariat, sending the form to carriere.scienze@ateneo.univr.it during the period indicated.

2. CLA certificate or language equivalency.

In addition to those required by the curriculum, the following are recognized for those matriculated from A.Y. 2021/2022:

  • English language: 3 CFUs are recognized for each level of proficiency above the one required by the course of study (if not already recognized in the previous course of study).
  • Other languages and Italian for foreigners: 3 cfu are recognized for each proficiency level starting from A2 (if not already recognized in the previous study cycle).

These cfu will be recognized, up to a maximum of 6 cfu in total, as type F if the teaching plan allows, or as type D. Additional elective credits for language knowledge may be recognized only if consistent with the student's educational project and if adequately justified.

Those enrolled until A.Y. 2020/2021 should consult the information found here.

Booklet entry mode: request the certificate or equivalency to the CLA and send it to the Student Secretariat - Careers for career entry of the exam, via email: carriere.scienze@ateneo.univr.it

3. Soft skills

Discover the training paths promoted by the University's TALC - Teaching and learning center, intended for students regularly enrolled in the academic year of course delivery https://talc.univr.it/it/competenze-trasversali

Booklet entry mode: the teaching is not expected to be included in the curriculum. Only after obtaining the Open Badge, the CFUs in the booklet will be automatically validated. The registration of CFUs in career is not instantaneous, but there will be some technical time to wait.  

4. CONTAMINATION LAB 

The Contamination Lab Verona (CLab Verona) is an experiential course with modules on innovation and enterprise culture that offers the opportunity to work in teams with students from all areas to solve challenges set by companies and organisations.  

Upon completion of a CLab, students will be entitled to receive 6 CFU (D- or F-type credits).  

Find out more:  https://www.univr.it/clabverona 

PLEASE NOTE: In order to be admitted to any teaching activities, including those of your choice, you must be enrolled in the academic year in which the activities in question are offered. Students who are about to graduate in the December and April sessions are therefore advised NOT to undertake extracurricular activities in the new academic year in which they are not enrolled, as these graduation sessions are valid for students enrolled in the previous academic year. Therefore, students who undertake an activity in an academic year in which they are not enrolled will not be granted CFU credits.  

5. Stage/internship period

In addition to the CFUs required by the curriculum (check carefully what is indicated on the Didactic Regulations): here information on how to activate the internship. 

Check in the regulations which activities can be Type D and which can be Type F.

Teachings and other activities that can be entered autonomously in the booklet

Academic year:
Semester 1 From 10/3/22 To 1/27/23
years Modules TAF Teacher
1° 2° Introduction to Robotics for students of scientific courses. D Paolo Fiorini (Coordinator)
1° 2° Matlab-Simulink programming D Bogdan Mihai Maris (Coordinator)
1° 2° Rapid prototyping on Arduino D Franco Fummi (Coordinator)
1° 2° Programming Challanges D Romeo Rizzi (Coordinator)
Semester 2 From 3/6/23 To 6/16/23
years Modules TAF Teacher
1° 2° Introduction to 3D printing D Franco Fummi (Coordinator)
1° 2° Python programming language D Carlo Combi (Coordinator)
1° 2° HW components design on FPGA D Franco Fummi (Coordinator)
1° 2° Protection of intangible assets (SW and invention)between industrial law and copyright D Roberto Giacobazzi (Coordinator)
List of courses with unassigned period
years Modules TAF Teacher
1° 2° Federated learning from zero to hero D Gloria Menegaz

Teaching code

4S009021

Credits

6

Language

English en

Scientific Disciplinary Sector (SSD)

ING-INF/01 - ELECTRONIC ENGINEERING

The teaching is organized as follows:

Teoria

Credits

4

Period

Semester 1

Academic staff

Alessandro Romeo

Laboratorio

Credits

2

Period

Semester 1

Academic staff

Francesco Enrichi

Learning objectives

The course aims to educate students on advanced theoretical and technological aspects of integrated electronic devices and sensors of signals and data. The main objective of the course is therefore to provide the principles of physics of integrated devices, knowledge of the technology of optical, thermoelectric, magnetic and gas sensors, their interface with advanced software applications as well as the methods of use of the same in the environment robotic and manufacturing. Upon completion of the course, the student would demonstrate the acquisition of the fundamental knowledge of the technology, functioning and applications of integrated electronic devices and sensors. This knowledge will allow the student to: i) understand the behavior of integrated electronic devices; ii) select and apply sensors for the acquisition of signals and data in a robotic and manufacturing environment; iii) interface sensors to signal and data processing applications. After this course, the student will have acquired the ability to independently assess the advantages and disadvantages of different technological and design solutions in the field of integrated electronic devices and signal and data acquisition sensors. In addition, he will be able to: i) carry out a group laboratory project and present its results by motivating the choices made with language appropriateness: ii) autonomously continue the study and research in the field of integrated electronic devices and acquisition of signals and data, addressing advanced issues both in the industrial and scientific fields.

Prerequisites and basic notions

In order to properly follow the lectures it is strongly recommended to have already acquired knowledge on classical physics (laws of motion, work, energy, electric field, electric potential).

Program

In order to properly follow the lectures it is strongly recommended to have already acquired knowledge on classical physics (laws of motion, work, energy, electric field, electric potential).
The course consists of theoretical section and two different experimental sections in the lab (simulation and hardware).
Topics:
Elements of Classical Physics and Atomic Physics: work and energy, electric field and potential, electric current, Ohm's law, linear circuits resistivity and temperature dependence in metals and semiconductors, the Bohr model, the periodic table of the elements
Crystal structure and electrical properties of metals, semiconductors and doped semiconductors: gas model of electrons in metals as a link model in semiconductors, concept of gap, doped semiconductors, nods to the band theory, conduction current and dissemination
P-n junction: non-polarized and polarized junction, ddp contact, voltage-current characteristic in forward and reverse bias, junction diode, Zener diode, OR / AND gates to diodes, switching times
Bipolar junction transistor BJT, input curves and in common emitter configuration output, common base, inverter, transfer rates characteristic and noise margins, switching times
Transitor in the field of JFET and MOSFET effect, manufacturing techniques, output and transfer curves, MOSFET and CMOS inverters, transfer characteristics, noise margins, switching times
Elementary digital circuits in MOS technology, CMOS, bipolar, ECL: NOR and NAND MOSFET and CMOS, NAND DTL, HTL, TTL, OR / NOR ECL
Comparison of logic families: propagation delay, power dissipation, fan-out, noise margins
-Laboratory (software) with circuit simulation with Micro Cap (12 hours).
-Laboratory (hardware) with circuit fabrication on pre-prepared electronic cards (12 hours).
The complete teaching material is available on the e-learning portal.

Bibliography

Visualizza la bibliografia con Leganto, strumento che il Sistema Bibliotecario mette a disposizione per recuperare i testi in programma d'esame in modo semplice e innovativo.

Didactic methods

The lessons are frontal, theoretical with explanations of practical applications and they take place in the class. It will be possible for those who would be unable to follow, since tested positive for covid-19, to request supplementary didactic material.

Learning assessment procedures

The exam will be an oral interview on the topics addressed during the course and will be divided into two: -a part on the basic knowledge of semiconductor and transistor physics.
If you pass the first test you get to the second part: In the second part you will be asked for a paper on a topic developed during the course, for example the technology of a particular sensor or device. The student will present the thesis through a presentation (for example in power point) and will be asked the physical principles of operation of the semiconductors and electronic devices discussed. Attention: the preparation of the thesis alone is not enough to pass the exam, you need to know what was explained in class.

Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE

Evaluation criteria

Knowledge of semiconductor theory will be evaluated, and above all technical and scientific applications such as the manufacture of sensors, devices, automatic machines.

Criteria for the composition of the final grade

Evaluation of the proposed thesis and of the basic knowledge of the course program.

Exam language

English