Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Study Plan
The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.
1° Year
Modules | Credits | TAF | SSD |
---|
2° Year activated in the A.Y. 2022/2023
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
1 module among the following (1st year: Big Data epistemology and Social research; 2nd year: Cybercrime, Data protection in business organizations, Comparative and Transnational Law & Technology)
2 courses among the following (1st year: Business analytics, Digital Marketing and market research; 2nd year: Logistics, Operations & Supply Chain, Digital transformation and IT change, Statistical methods for Business intelligence)
2 courses among the following (1st year: Complex systems and social physics, Discrete Optimization and Decision Making, 2nd year: Statistical models for Data Science, Continuous Optimization for Data Science, Network science and econophysics, Marketing research for agrifood and natural resources)
2 courses among the following (1st year: Data Visualisation, Data Security & Privacy, Statistical learning, Mining Massive Dataset, 2nd year: Machine Learning for Data Science)
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
Programming and database (2021/2022)
Teaching code
4S009064
Credits
12
Language
English
Scientific Disciplinary Sector (SSD)
INF/01 - INFORMATICS
The teaching is organized as follows:
Programming
Database
Learning outcomes
The course is structured as follows [Programming Module] The purpose of the module is to provide skills and knowledge in programming in Python and R, giving the basic concepts of algorithm with particular reference to the use of the Python language (syntax, data structures, data import / export in Python, data visualization in Python) and its applications in data science [Database form] The course aims to provide the skills necessary for the design of data according to the requirements with reference to different application contexts and within the production process of software systems; for the management and effective and efficient use of data and for the study of a system for the management of relational databases in order to create, manage and query databases. At the end of the course the student has to show to have acquired the following skills: ● ability to develop Python code to solve concrete examples ● ability to evaluate algorithms in terms of complexity in time and space ● knowledge of the syntax and semantics of the language used ● knowledge of the bases of: database management; architecture and functionality of a database management system; concepts of physical independence, logical independence, persistence, competition, reliability, query and updating of a database; advantages of a database management system compared to an operating system file system ● ability to conceptually design databases, e.g., conceptual models for data design; the Entity-Relationship (E-R) model; elements of the E-R model: entities, attributes, relationships, generalization hierarchies and cardinality constraints; the conceptual scheme of a database ● knowledge of the basics of the logical design of a database: data models for database management systems; the relational model; relationship definitions, integrity constraints and relationship scheme; the logical scheme of a database; rules for the translation of conceptual schemes into relationship schemes ● understanding of the mechanisms of interaction with a database: introduction to languages for the definition, modification and query of a database; relational algebra; optimization of algebra expressions; the SQL language; the selection construct (Select-From-Where), nested queries, sorting and grouping of data in SQL; the concept of sight.