Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

This information is intended exclusively for students already enrolled in this course.
If you are a new student interested in enrolling, you can find information about the course of study on the course page:

Laurea magistrale in Biotecnologie agro-alimentari - Enrollment from 2025/2026

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.

CURRICULUM TIPO:

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S02765

Credits

6

Coordinator

Paola Dominici

Language

Italian

Also offered in courses:

Scientific Disciplinary Sector (SSD)

BIO/10 - BIOCHEMISTRY

The teaching is organized as follows:

Mod 2

Credits

3

Period

II semestre

Academic staff

Paola Dominici

Mod 1

Credits

3

Period

II semestre

Academic staff

Paola Dominici

Learning outcomes

Course Description: The course introduces fundamental tools and techniques currently used to engineer protein molecules. Covers the methods used to analyze the impact of these alterations on different protein functions with specific emphasis on enzymatic catalysis. Uses case studies to reinforce the concepts covered, as well as to demonstrate the wide impact of protein engineering research.
Course Significance: Protein engineering is an interdisciplinary field where engineering principles and practices are utilized to generate molecules with novel properties.
The applications of this technology can be found in diverse areas including: drug discovery,
industrial chemical synthesis, transgenic plant research, and nanotechnology.

Program

1. Protein Engineering
• General concepts
• Which targets can be addressed?
• How to choose between rational design and evolutive methods.
2. Generation of mutant libraries
• Random mutagenesis, DNA shuffling, Error-prone PCR
• Saturation mutagenesis, SeSaMmethod et
• Examples for successful applications: Directed evolution of DCase; Directed evolution of alpha amylase
• Site-directed mutagenesis. Mutagenic primer design.

3. Emerging principles in protease-based drug discovery. Aspartate proteases inhibitors: inhibitors of HIV protease.
4. The Tumor Suppressor p53: From Structures to Drug Discovery.
Structure–function–rescue: the diverse nature of common p53 cancer mutants.
5. Structure and catalytic mechanism of COX-1 and COX-2. From structure to rational design of selective inhibitors.

Examination Methods

Module:
-------

Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE