Studiare

In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.

A.A. 2016/2017

Calendario accademico

Il calendario accademico riporta le scadenze, gli adempimenti e i periodi rilevanti per la componente studentesca, personale docente e personale dell'Università. Sono inoltre indicate le festività e le chiusure ufficiali dell'Ateneo.
L’anno accademico inizia il 1° ottobre e termina il 30 settembre dell'anno successivo.

Calendario accademico

Calendario didattico

Il calendario didattico indica i periodi di svolgimento delle attività formative, di sessioni d'esami, di laurea e di chiusura per le festività.

Definizione dei periodi di lezione
Periodo Dal Al
I sem. 3-ott-2016 31-gen-2017
II sem. 1-mar-2017 9-giu-2017
Sessioni degli esami
Sessione Dal Al
Sessione invernale Appelli d'esame 1-feb-2017 28-feb-2017
Sessione estiva Appelli d'esame 12-giu-2017 31-lug-2017
Sessione autunnale Appelli d'esame 1-set-2017 29-set-2017
Sessioni di lauree
Sessione Dal Al
Sessione estiva Appelli di Laurea 20-lug-2017 20-lug-2017
Sessione autunnale Appelli di laurea 17-ott-2017 17-ott-2017
Sessione invernale Appelli di laurea 22-mar-2018 22-mar-2018
Vacanze
Periodo Dal Al
Festa di Ognissanti 1-nov-2016 1-nov-2016
Festa dell'Immacolata Concezione 8-dic-2016 8-dic-2016
Vacanze di Natale 23-dic-2016 8-gen-2017
Vacanze di Pasqua 14-apr-2017 18-apr-2017
Anniversario della Liberazione 25-apr-2017 25-apr-2017
Festa del Lavoro 1-mag-2017 1-mag-2017
Festa della Repubblica 2-giu-2017 2-giu-2017
Vacanze estive 8-ago-2017 20-ago-2017

Calendario esami

Gli appelli d'esame sono gestiti dalla Unità Operativa Didattica e Studenti Scienze e Ingegneria.
Per consultazione e iscrizione agli appelli d'esame visita il sistema ESSE3.
Per problemi inerenti allo smarrimento della password di accesso ai servizi on-line si prega di rivolgersi al supporto informatico della Scuola o al servizio recupero credenziali

Calendario esami

Per dubbi o domande leggi le risposte alle domande più frequenti F.A.Q. Iscrizione Esami

Docenti

A B C D G M O P R S

Angeleri Lidia

lidia.angeleri@univr.it 045 802 7911

Baldo Sisto

sisto.baldo@univr.it 045 802 7935

Barbu Viorel

Bos Leonard Peter

leonardpeter.bos@univr.it +39 045 802 7987

Caliari Marco

marco.caliari@univr.it +39 045 802 7904

Daldosso Nicola

nicola.daldosso@univr.it +39 045 8027076 - 7828 (laboratorio)

Di Persio Luca

luca.dipersio@univr.it +39 045 802 7968

Gregorio Enrico

Enrico.Gregorio@univr.it 045 802 7937

Marigonda Antonio

antonio.marigonda@univr.it +39 045 802 7809

Mazzuoccolo Giuseppe

giuseppe.mazzuoccolo@univr.it +39 0458027838

Monti Francesca

francesca.monti@univr.it 045 802 7910

Orlandi Giandomenico

giandomenico.orlandi at univr.it 045 802 7986
Foto,  21 ottobre 2016

Pauksztello David

foto,  6 marzo 2017

Petrakis Iosif

Rizzi Romeo

romeo.rizzi@univr.it +39 045 8027088

Sansonetto Nicola

nicola.sansonetto@univr.it 049-8027932

Schuster Peter Michael

peter.schuster@univr.it +39 045 802 7029

Solitro Ugo

ugo.solitro@univr.it +39 045 802 7977

Piano Didattico

Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.

CURRICULUM TIPO:
InsegnamentiCreditiTAFSSD
6
B
(MAT/05)

1° Anno

InsegnamentiCreditiTAFSSD

2° Anno

InsegnamentiCreditiTAFSSD
6
B
(MAT/05)
Insegnamenti Crediti TAF SSD
Tra gli anni: 1°- 2°Un insegnamento a scelta
Tra gli anni: 1°- 2°
Tra gli anni: 1°- 2°
Altre attività formative
4
F
-

Legenda | Tipo Attività Formativa (TAF)

TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.




SStage e tirocini presso imprese, enti pubblici o privati, ordini professionali

Codice insegnamento

4S001109

Coordinatore

Luca Di Persio

Crediti

6

Settore Scientifico Disciplinare (SSD)

MAT/06 - PROBABILITÀ E STATISTICA MATEMATICA

Lingua di erogazione

Inglese en

Periodo

I sem. dal 3-ott-2016 al 31-gen-2017.

Obiettivi formativi

Mathematical Finance
Anno Accademico 2016/2017

Il corso di Mathematical Finance per la Laurea Magistrale internazionalizzata (erogata completamente in lingua Inglese) si propone di introdurre i principali concetti del calcolo stocastico a tempo discreto e continuo nell'ambito della moderna teoria dei mercati finanziari.

In particolare lo scopo fondamentale del corso è quello di fornire gli strumenti matematici propri del setting del calcolo stocastico di Itȏ per la determinazione, lo studio e l'analisi di modelli per azioni e/o tassi d'interesse determinati da equazioni differenziali stocastiche con rumore Browniano.

Ingredienti fondamentali sono le basi della teoria delle martingale a tempo continuo, i teoremi Girsanov e Feynman–Kac e le loro applicazioni alla teoria dell'option pricing con specifici esempi in ambito azionario, ivi comprendendo modelli di tipo path-dependent, e nell'ambito dei modelli per tassi d'interesse.

Grande attenzione verrà posta anche agli aspetti caratterizzanti l'applicazione concreta dei suddetti concetti nella pratica del risk modelling/management e del pricing, con l'aiuto di soluzioni informatiche e lezioni arricchite da simulazioni al calcolatore.

E' importante sottolineare come l'insegnamento di Sistemi Stocastici sia organizzato in modo tale che gli studenti possano concretamente completare ed ulteriormente sviluppare le proprie:
° abilità nello stabilire collegamenti profondi con discipline non matematiche, sia in termini di
motivazione della ricerca matematica che di ricadute applicative dei risultati di tali indagini;
° specifiche competenze computazionali ed informatiche;
° abilità di comprensione di testi, anche avanzati, di Matematica in generale e Matematica applicata in particolare;
° capacità di sviluppare modelli matematici per le scienze fisiche e naturali, essendo al contempo in grado di analizzarne i limiti e l'effettiva applicabilità, anche da un punto di vista computazionale;
° competenze atte allo sviluppo di opportuni modelli matematici e statistici per l’economia e per i mercati
finanziari;
° capacità di estrarre informazioni qualitative da dati quantitativi;
° conoscenze di linguaggi di programmazione o software specifici.

Programma

Mathematical Finance
Anno Accademico 2016/2017

Il corso vedrà il contributo anche dei dottori Michele Bonollo e Luca Spadafora, con programmi da svolgere come nel dettaglio sottostante

[ Luca Di Persio ]

Modelli a tempo discreto
• Prodotti finanziari, processi valore, strategie di copertura, completezza, arbitraggio
• Teoremi fondamentali dell' asset pricing (a tempo discreto)

Il modello binomiale per l' Asset Pricing
• modelli binomiali uno/multi periodali
• Interludio: passeggiate casuali e loro principali proprietà (passegguate casuali simmetriche, riscalate, proprietà martingala e variazione quaratica)
• Derivazione dell'equazione i Black e Schloes (limite a tempo continuo

Moto Browniano (BM)
• riassunto delle principali proprietà del MB: filtrazione generata, proprietà martingala, variazione quadratica, volatilità proprietà di rilfessione

Calcolo stocastico (richiami)
• integrale di Itȏ
• Formula di Itȏ-Döblin
• Equazione di Black-Scholes-Merton
• Evoluzione di portafogli/processi di valore
• Soluzione dell'equazione di Black-Scholes-Merton Equation
• Analisi di sensitività

Prezzaggio neutrale al rischio
• Misura neutrale al rischio e teorema di Girsanov's
• Prezzaggio sotto la misura neutrale al rischio
• Teoremiii fondamentali dell'Asset Pricing
• Esistenza ed unicità della misura neutrale al rischio
• Pagamento di dividendi, anche continui
• Forwards e Futures

[ Luca Spadfora ]

***Statistics
*Theory Review: distributions, the moments of a distribution, statistical estimators, Central Limit Theorem (CLT), mean, variance and empirical distributions.
*Elements of Extreme Value Theory: what is the distribution of the maximum?
Numerical studies: statistical error of the sample mean, CLT at work, distributions of extreme values.

***Risk Modelling
*How can we measure risk? Main risk measures: VaR and Expected Shorfall
*How to model risk: historical, parametric and Montecarlo methods
*We have a risk model: does it works? The backtesting methodology
*Empirical studies a) empirical behavior and stylized facts of historical series
*Empirical studies b) Implementation of risk models
*Empirical studies c) Implementation of risk models backtesting

[ Miche Bonollo ]

*** Tools for derivatives pricing
* Functionals of brownian motions: fist hitting time, occupation time, local time, min-MAX distribution review
* Application 1: range accrual payoff
* Application 2: worst of and Rainbow payoff

*** Credit portfolio models
* The general framework. The credit portfolio data
* Gaussian Creidit Metrics - Merton model
* The quantile estimation problem with Montecarl approach. L-Estimators, Harrel-Davis

Bibliografia

Bibliography:

A. F. McNeil, R. Frey, P. Embrechts, Quantitative Risk Management:Concepts, Techniques and Tools, Princeton University Press, 2015.
J. -P. Bouchaud, M. Potter, Theory of Financial Risk - From Statistical Physics to Risk Management, University Press, Cambridge, 2000.
R. Cont, P. Tankov, Financial Modelling With Jump Processes, Chapman and Hall, CRC Press, 2003.
E. J. Gumbel, Statistics of Extremes, Dover Publications, Mineola (NY), 2004.
M.Yor et al, "Exponential Functionals of Brownian Motion and related Processes", Springer.
Shreve, Steven , Stochastic Calculus for Finance II: Continuous-Time Models
Shreve, Steven , Stochastic Calculus for Finance I: The Binomial Asset Pricing Model

Bibliografia

Testi di riferimento
Autore Titolo Casa editrice Anno ISBN Note
M.Yor et al Exponential Functionals of Brownian Motion and related Processes Springer 2010
R. Cont, P. Tankov Financial Modelling With Jump Processes Chapman and Hall, CRC Press 2003
A. F. McNeil, R. Frey, P. Embrechts Quantitative Risk Management:Concepts, Techniques and Tools Princeton University Press 2015
E. J. Gumbel Statistics of Extremes Dover Publications, Mineola (NY) 2004
S. E. Shreve Stochastic Calculus for Finance II: Continuous-Time Models Springer, New York 2004
S. E. Shreve Stochastic Calculus for Finance I: The Binomial Asset Pricing Model Springer, New York 2004
J. -P. Bouchaud, M. Potter Theory of Financial Risk - From Statistical Physics to Risk Management University Press, Cambridge 2000

Modalità d'esame

Mathematical Finance
Anno Accademico 2016/2017

Esame Finale: l'esame finale consisterà in una parte orale, da sostenere con il prof L. Di Persio, che verterà sugli aspetti teorici soggiacenti agli argomenti trattati all'interno dell'intero corso, ivi comprese le parti sviluppate da M. Bonollo e L. Spadafora.

Inoltre ogni studente sarà chiamato a presentare un caso di studio scelto all'interno di una lista di progetti che verrà redatta tanto da M. Bonollo che da L. Spadafora in accordo con le parti di programma di rispettiva competenza [ vedere sezione Programma del corso ].

Il voto finale è espresso in trentesimi: in particolare:
° i dottori Bonollo e Spadafora comunicheranno al prof. Di Persio una relazione relativa alla bontà del progetto presentato dal singolo studente;
° il prof. Di Persio utilizzerà la precedente relazione, insieme all'esito dell'esame orale da lui condotto, per decidere un voto finale espresso in trentesimi.

E' importante sottolineare come le competenze acquisite dagli studenti al termine del corso permetteranno ad essi di:
° svolgere compiti tecnici e/o professionali di alto profilo, tanto a carattere modellistico-matematico, quanto di tipo
computazionale, tanto presso laboratori e/o enti di ricerca, quanto nei settori della finanza, delle assicurazioni, dei servizi, e nella pubblica amministrazione, tanto autonomamente, che in gruppo;
° leggere e comprendere testi avanzati di matematica e delle scienze applicate, anche a livello
di ricerca;
° utilizzare con facilità strumenti informatici e computazionali di alto livello, al fine di implementare concretamente gli
algoritmi e i modelli illustrati nel corso, così come per acquisire ulteriori informazioni;
° conoscere approfonditamente le tecniche dimostrative utilizzate nel corso al fine di poterle utilizzare per risolvere problemi in settore matematici diversi, anche traendo sia gli strumenti che i metodi necessari, da contesti apparentemente distanti così da formalizzare matematicamente problemi espressi con linguaggi propri di altre discipline, tanto scientifiche quanto economiche, utilizzando, adattando e sviluppando modelli avanzati.

Tipologia di Attività formativa D e F

Insegnamenti non ancora inseriti

Prospettive


Avvisi degli insegnamenti e del corso di studio

Per la comunità studentesca

Se sei già iscritta/o a un corso di studio, puoi consultare tutti gli avvisi relativi al tuo corso di studi nella tua area riservata MyUnivr.
In questo portale potrai visualizzare informazioni, risorse e servizi utili che riguardano la tua carriera universitaria (libretto online, gestione della carriera Esse3, corsi e-learning, email istituzionale, modulistica di segreteria, procedure amministrative, ecc.).
Entra in MyUnivr con le tue credenziali GIA.

Attività didattiche alternative

Per rendere il percorso di studi più flessibile, è possibile chiedere di sostituire alcuni insegnamenti con altri del medesimo corso di studio in Mathematics all'Università degli Studi di Verona (qualora gli obiettivi formativi degli insegnamenti che si intendono sostituire siano già stati raggiunti nella carriera pregressa), oppure con altri del corso di studio in Mathematics all'Università degli Studi di Trento.

Allegati


Prova Finale

Per gli scadenziari, gli adempimenti amministrativi e gli avvisi sulle sessioni di laurea, si rimanda al servizio Sessioni di laurea - Scienze e Ingegneria.

1. La prova finale prevede la preparazione sotto la guida di un relatore di un elaborato scritto (tesi), che può consistere nella trattazione di un argomento teorico, o nella risoluzione di un problema specifico, o nella descrizione di un progetto di lavoro, o di un'esperienza fatta in un'azienda, in un laboratorio, in una scuola ecc. La tesi, preferibilmente redatta in TeX/LaTeX/AMSTeX e usando il pacchetto LaTeX Frontespizio, può essere inviata preliminarmente in formato elettronico ai membri della Commissione Valutazione Tesi e dovrà essere presentata, in duplice copia, al momento della discussione. La tesi potrà essere redatta anche in lingua inglese.
2. La discussione della tesi, che dovrà durare indicativamente tra i venti e i trenta minuti, avverrà davanti ad una Commissione Valutazione Tesi nominata dal Presidente del collegio Didattico di Matematica. ll Presidente della commissione è il professore di ruolo di più alto grado accademico. La Commissione Valutazione Tesi è composta da almeno tre Docenti tra cui possibilmente il Relatore. Ogni Commissione Valutazione Tesi potrà valutare più studenti in funzione del contenuto del lavoro da essi presentato. La discussione della tesi viene effettuata durante i trenta giorni precedenti la data stabilita per la sessione di Laurea, ne viene data adeguata comunicazione ed è aperta al pubblico.
3. La Commissione Valutazione Tesi attribuisce ad ogni studente un punteggio della prova finale che va da zero a cinque. La valutazione della prova finale si articola in maniera tale da tenere conto delle conoscenze acquisite dallo studente durante il lavoro di tesi, del loro grado di comprensione, dell'autonomia di giudizio, delle capacità dimostrate dallo studente di applicare dette conoscenze e di comunicare efficacemente e compiutamente l'insieme degli esiti del lavoro ed i principali risultati ottenuti (si vedano la Tabella 1 per tesi di laurea triennale e la Tabella 2 per tesi di laurea magistrale, in calce al presente regolamento). Il Presidente della Commissione Valutazione Tesi invia una relazione, firmata da tutti i componenti della Commissione, al Presidente della Commissione di Esame Finale indicando per ogni studente il punteggio attribuito per l'esame finale ed un eventuale breve giudizio.
4. La Commissione di Esame Finale, unica per tutti gli studenti di quella sessione di Laurea, viene nominata dal Presidente del Collegio Didattico di Matematica. Il Presidente della commissione è il professore di ruolo di più alto grado accademico. La Commissione di Esame Finale deve essere composta da un Presidente e almeno da altri quattro Commissari scelti tra i docenti dell'Ateneo.
5. La Commissione di Esame Finale determina per ogni studente il punteggio finale sommando la media, pesata rispetto ai relativi CFU, espressa in centodecimi, dei voti degli esami del piano di studi, escluse le attività in TAF F o in sovrannumero, con il punteggio della prova finale. Aggiunge inoltre il punteggio attribuito alla carriera dello studente, da zero a due (si veda la Tabella 3, in calce al presente regolamento). Il voto finale, espresso in centodecimi, si ottiene arrotondando all'intero più vicino (all'intero superiore, in caso di equidistanza) il punteggio ottenuto, senza eccedere 110 centodecimi e assegnando la lode solo con l'unanimità della Commissione di Esame Finale al candidato che abbia raggiunto i 110 centodecimi dopo l'arrotondamento.
6. La Commissione di Esame Finale procede alla proclamazione dei nuovi Laureati in Matematica Applicata o Laureati magistrali in Mathematics con una cerimonia pubblica ed ufficiale.
 

Allegati

Titolo Info File
Doc_Univr_pdf 1. Come scrivere una tesi 31 KB, 29/07/21 
Doc_Univr_pdf 2. How to write a thesis 31 KB, 29/07/21 
Doc_Univr_pdf 4. Regolamento tesi (valido da luglio 2020) 259 KB, 29/07/21 
Doc_Univr_pdf 5. Regolamento tesi (valido da luglio 2022) 256 KB, 29/07/21 

Elenco delle proposte di tesi e stage

Proposte di tesi Area di ricerca
Controllo di sistemi multiagente Calculus of variations and optimal control; optimization - Hamilton-Jacobi theories, including dynamic programming
Controllo di sistemi multiagente Calculus of variations and optimal control; optimization - Manifolds
Controllo di sistemi multiagente Calculus of variations and optimal control; optimization - Optimality conditions
Formule di rappresentazione per gradienti generalizzati Mathematics - Analysis
Formule di rappresentazione per gradienti generalizzati Mathematics - Mathematics
Tesi assegnate a studenti di matematica Argomenti vari
Stage Area di ricerca
Proposte di stage per studenti di matematica Argomenti vari

Modalità di frequenza

Come riportato al punto 25 del Regolamento Didattico per l'A.A. 2021/2022, la frequenza è in generale non obbligatoria, con la sola eccezione di alcune attività laboratoriali. Per queste sarà chiaramente indicato nella scheda del corrispondente insegnamento l'ammontare di ore per cui è richiesta la frequenza obbligatoria.
Per le modalità di erogazione della didattica, si rimanda alle informazioni in costante aggiornamento dell'Unità di Crisi.

Doppio Titolo

Grazie ad una rete di accordi con Atenei esteri, l’Università di Verona offre percorsi formativi internazionali che consentono l’acquisizione di un doppio titolo di studio. L’ammissione ad un CdS a doppio titolo consente di conseguire contemporaneamente, nel tempo di un normale ciclo di studi (di cui una parte viene svolta all'estero), sia il titolo di studio dell’Università di Verona che il titolo rilasciato dall'Ateneo partner, garantendo di vedere riconosciuto il diploma di laurea in entrambi i Paesi.
L'accesso al doppio titolo (così come l’eventuale sostengo finanziario) è regolato da uno specifico bando, e il numero di posti è limitato.

⇒ Pubblicato l'Avviso per la selezione di studenti da ammettere ai percorsi di laurea a doppio titolo dell’Università degli Studi di Verona


Gestione carriere


Ulteriori servizi

I servizi e le attività di orientamento sono pensati per fornire alle future matricole gli strumenti e le informazioni che consentano loro di compiere una scelta consapevole del corso di studi universitario.