Training and Research

Credits

11

Language

English, Inglese

Class attendance

Free Choice

Location

UDINE

Learning objectives

This course aims to cover the main ideas and theoretical results employed in applied business economics research “Advanced quantitative research methods”. The entire course is based on Stata and focussed on microeconometrics, and it will follow closely the textbook by Cameron and Trivedi “Microeconometric Using Stata”, 2010 edition by Stata Press.

Prerequisites and basic notions

Students should have taken the course on introduction to statistics for economics and have an understanding of calculus.

Program

TOPICS
Class 1 (MUS ch1)
Introduction to Stata for data management & loops
Class 2 (MUS ch2)
Data exploration methods: smoothing & other graphics.
Class 3 (MUS ch3)
Linear models and testing.
Class 4 (MUS ch4)
Data simulation
Class 5 (MUS ch6)
Endogeneity & Linear instrumental variables.
Class 6 (MUS ch5)
GLS, FGLS, WLS, systems of equations. (MUS ch5)
Weighting, clustering & stratification.
Class 7 (MUS ch7)
Quantile regression.

Class 8 (MUS ch8) Panel

Class 9
Testing methods (MUS ch12)

(MUS ch10-11)
NLReg, optimization and testing.
Bootstrap (MUS ch13)
Class 10 (MUS ch16) Tobit and selection.
Class 11 (MUS ch15)
Multinomial, conditional, mixed logit models.
Class 13 (MUS ch9)
Panel data models (adv.)
Class 12 (MUS ch17)
Models count models, Poisson, Neg. bin., gen. NegBin, Hurdle models
Class 14
Process model & process analysis. Case study replication

Didactic methods

In-class lectures with computer lab tutorials and assignments

Learning assessment procedures

Assignments during the course, final take-home assignment with report on data analysis.

Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE

Assessment

Logical coherence, analytical capacity, quality of the reports, coding structure and commenting of the programming codes used for data analysis and computation.

Criteria for the composition of the final grade

Class Preparation, Participation, 40%
Assignment & Final exam 60%

PhD school courses/classes - 2022/2023

PhD School training offer to be defined

Faculty

B C F G L M P R S V Z

Bazzani Claudia

symbol email claudia.bazzani@univr.it symbol phone-number 0458028734

Blasi Silvia

symbol email silvia.blasi@univr.it symbol phone-number 045 8028218

Cantele Silvia

symbol email silvia.cantele@univr.it symbol phone-number 045 802 8220 (VR) - 0444 393943 (VI)

Capitello Roberta

symbol email roberta.capitello@univr.it symbol phone-number 045 802 8488

Chiaramonte Laura

symbol email laura.chiaramonte@univr.it

Confente Ilenia

symbol email ilenia.confente@univr.it symbol phone-number 045 802 8174

Florio Cristina

symbol email cristina.florio@univr.it symbol phone-number 045 802 8296

Gaudenzi Barbara

symbol email barbara.gaudenzi@univr.it symbol phone-number 045 802 8623

Lai Alessandro

symbol email alessandro.lai@univr.it symbol phone-number 045 802 8574

Landi Stefano

symbol email stefano.landi@univr.it symbol phone-number 045 802 8168

Leardini Chiara

symbol email chiara.leardini@univr.it symbol phone-number 045 802 8222

Moggi Sara

symbol email sara.moggi@univr.it symbol phone-number 045 802 8290

Mola Lapo

symbol email lapo.mola@univr.it symbol phone-number 0458028565

Ricci Elena Claire

symbol email elenaclaire.ricci@univr.it symbol phone-number 045 8028422

Rossignoli Cecilia

symbol email cecilia.rossignoli@univr.it symbol phone-number 045 802 8173

Rossignoli Francesca

symbol email francesca.rossignoli@univr.it symbol phone-number 0444 393941 (Ufficio Vicenza) 0458028261 (Ufficio Verona)

Russo Ivan

symbol email ivan.russo@univr.it symbol phone-number 045 802 8161 (VR)

Scarpa Riccardo

symbol email riccardo.scarpa@univr.it

Sproviero Alice Francesca

symbol email alicefrancesca.sproviero@univr.it symbol phone-number 045 802 8216

Stacchezzini Riccardo

symbol email riccardo.stacchezzini@univr.it symbol phone-number 0458028186

Vernizzi Silvia

symbol email silvia.vernizzi@univr.it symbol phone-number 045 802 8168 (VR) 0444 393937 (VI)

Veronesi Gianluca

symbol email gianluca.veronesi@univr.it

Zardini Alessandro

symbol email alessandro.zardini@univr.it symbol phone-number 045 802 8565

PhD students

PhD students present in the:
Course lessons
PhD Schools lessons

Loading...

Guidelines for PhD students

Below you will find the files that contain the Guidelines for PhD students and rules for the acquisition of ECTS credits (in Italian: "CFU") for the Academic Year 2023/2024.