Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Study Plan

This information is intended exclusively for students already enrolled in this course.
If you are a new student interested in enrolling, you can find information about the course of study on the course page:

Laurea magistrale in Computer Engineering for intelligent Systems - Enrollment from 2025/2026

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.

CURRICULUM TIPO:

2° Year   It will be activated in the A.Y. 2025/2026

ModulesCreditsTAFSSD
It will be activated in the A.Y. 2025/2026
ModulesCreditsTAFSSD
Modules Credits TAF SSD
Between the years: 1°- 2°
4 modules among the following:
- 1st year: Advanced visual computing and 3d modeling, Computer vision, Embedded & IoT systems design, Embedded operating systems, Robotics 
- 2nd year: Advanced control systems
6
B
ING-INF/05
6
B
ING-INF/04
Between the years: 1°- 2°
Between the years: 1°- 2°
Further activities
6
F
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S012360

Credits

6

Scientific Disciplinary Sector (SSD)

MAT/07 - FISICA MATEMATICA

Learning objectives

The aim of the first module is to deepen the knowledge and skills especially in the modern theory of dynamical systems and give the student a solid appreciation of the deep connections between mathematics and other scientific disciplines, both in terms of the mathematical problems that they inspire and the important role that mathematics plays in scientific research and industry. Mathematical software tools, and others, will be used to implement algorithms for the solution of the real world problems studied during the course. At the end of the course the student is expected to be able to complete professional and technical tasks of a high level in the context of mathematical modelling and computation, both working alone and in groups. In particular the student will be able to write a model of a real problem, to recognise the effective parameters and analyse the model and its possible implications. The second module wants to provide sufficient theoretical and numerical background for the optimal control of dynamical systems. Such problems will be developed by means of real application examples, and recent research studies. At the end of the course students will be able to decide which numerical method is suitable for the solution of some specific optimal control problems. He/She will be able to provide theoretical results on the controllability and stability of certain optimal control problem and numerical methods. He/She will be able to develop his/her own code, and capable choose the appropriate optimization method for each application shown during the course.

Educational offer 2024/2025

ATTENTION: The details of the course (teacher, program, exam methods, etc.) will be published in the academic year in which it will be activated.
You can see the information sheet of this course delivered in a past academic year by clicking on one of the links below: