Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

A.A. 2016/2017

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
I sem. Oct 3, 2016 Jan 31, 2017
II sem. Mar 1, 2017 Jun 9, 2017
Exam sessions
Session From To
Sessione invernale Appelli d'esame Feb 1, 2017 Feb 28, 2017
Sessione estiva Appelli d'esame Jun 12, 2017 Jul 31, 2017
Sessione autunnale Appelli d'esame Sep 1, 2017 Sep 29, 2017
Degree sessions
Session From To
Sessione estiva Appelli di Laurea Jul 12, 2017 Jul 12, 2017
Sessione autunnale Appelli di laurea Nov 21, 2017 Nov 21, 2017
Sessione invernale Appelli di laurea Mar 13, 2018 Mar 13, 2018
Holidays
Period From To
Festa di Ognissanti Nov 1, 2016 Nov 1, 2016
Festa dell'Immacolata Concezione Dec 8, 2016 Dec 8, 2016
Vacanze di Natale Dec 23, 2016 Jan 8, 2017
Vacanze di Pasqua Apr 14, 2017 Apr 18, 2017
Anniversario della Liberazione Apr 25, 2017 Apr 25, 2017
Festa del Lavoro May 1, 2017 May 1, 2017
Festa della Repubblica Jun 2, 2017 Jun 2, 2017
Vacanze estive Aug 8, 2017 Aug 20, 2017

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrolment FAQs

Academic staff

A B C D E F L M P R S T U V Z

Assfalg Michael

michael.assfalg@univr.it +39 045 802 7949

Astegno Alessandra

alessandra.astegno@univr.it 045802 7955

Ballottari Matteo

matteo.ballottari@univr.it 045 802 7098

Bassi Roberto

roberto.bassi@univr.it 045 802 7916; Lab: 045 802 7915

Bellin Diana

diana.bellin@univr.it 045 802 7090

Bettinelli Marco Giovanni

marco.bettinelli@univr.it 045 802 7902

Bolzonella David

david.bolzonella@univr.it 045 802 7965

Bronte Vincenzo

vincenzo.bronte@univr.it 045-8124007

Buffelli Mario Rosario

mario.buffelli@univr.it +39 0458027268

Cecconi Daniela

daniela.cecconi@univr.it +39 045 802 7056; Lab: +39 045 802 7087

Chignola Roberto

roberto.chignola@univr.it 045 802 7953

Crimi Massimo

massimo.crimi@univr.it 045 802 7924; Lab: 045 802 7050

Dall'Osto Luca

luca.dallosto@univr.it +39 045 802 7806

Delledonne Massimo

massimo.delledonne@univr.it 045 802 7962; Lab: 045 802 7058

Di Pierro Alessandra

alessandra.dipierro@univr.it +39 045 802 7971

Dominici Paola

paola.dominici@univr.it 045 802 7966; Lab: 045 802 7956-7086

D'Onofrio Mariapina

mariapina.donofrio@univr.it 045 802 7801

Erle Giorgio

giorgio.erle@univr.it +39 045802 8688
FF DBT_UNIVR_WEBSITE,  June 12, 2015

Fatone Francesco

francesco.fatone@univr.it 045 802 7965

Furini Antonella

antonella.furini@univr.it 045 802 7950; Lab: 045 802 7043

Lampis Silvia

silvia.lampis@univr.it 045 802 7095

Molesini Barbara

barbara.molesini@univr.it 045 802 7550
Foto,  April 9, 2014

Monaco Ugo Luigi

hugo.monaco@univr.it 045 802 7903; Lab: 045 802 7907 - 045 802 7082

Pandolfini Tiziana

tiziana.pandolfini@univr.it 045 802 7918

Perduca Massimiliano

massimiliano.perduca@univr.it +39 045 802 7984

Romeo Alessandro

alessandro.romeo@univr.it +39 045 802 7974-7936; Lab: +39 045 802 7808

Simonato Barbara

barbara.simonato@univr.it +39 045 802 7832; Lab. 7960

Spena Angelo

angelo.spena@univr.it 045 683 5623

Torriani Sandra

sandra.torriani@univr.it 045 802 7921
Foto personale,  July 18, 2012

Vallini Giovanni

giovanni.vallini@univr.it 045 802 7098; studio dottorandi: 045 802 7095

Vitulo Nicola

nicola.vitulo@univr.it 0458027982

Zapparoli Giacomo

giacomo.zapparoli@univr.it +390458027047

Zipeto Donato

donato.zipeto@univr.it +39 045 802 7204

Zoccatelli Gianni

gianni.zoccatelli@univr.it +39 045 802 7952

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

CURRICULUM TIPO:
ModulesCreditsTAFSSD
12
B
(BIO/04)
9
A
(CHIM/06)
6
A
(FIS/07)
English language competence-complete b1 level
6
E
-
ModulesCreditsTAFSSD
6
A
(FIS/07)
One course to be chosen among the following:
One course to be chosen among the following:
Tirocinio
9
F
-
Prova finale
3
E
-

1° Year

ModulesCreditsTAFSSD
12
B
(BIO/04)
9
A
(CHIM/06)
6
A
(FIS/07)
English language competence-complete b1 level
6
E
-

2° Year

ModulesCreditsTAFSSD
12
B
(BIO/11)
6
C
(CHIM/02)
6
B
(BIO/18)

3° Year

ModulesCreditsTAFSSD
6
A
(FIS/07)
One course to be chosen among the following:
One course to be chosen among the following:
Tirocinio
9
F
-
Prova finale
3
E
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




SPlacements in companies, public or private institutions and professional associations

Teaching code

4S00004

Coordinatore

Alessandro Romeo

Credits

6

Scientific Disciplinary Sector (SSD)

FIS/07 - APPLIED PHYSICS

Language

Italian

Period

II sem. dal Mar 1, 2017 al Jun 9, 2017.

Learning outcomes

LINKS:


Additional informations (as for example previous exams) are available at:

http://profs.scienze.univr.it/~romeo/lectures.htm
----------------------------------------------------

The Physics lectures aim to give a basic knowledge of the whole physics of mechanics and electromagnetism, enough for the understanding of physical phenomena in biotechnology and in life science.
The lectures will have a strong applicative part with exercises in class in order to ease the comprehension of the theoretical concepts and to develop the ability in problem solving.

Index:
1. Vectors, physical quantities, approximations
2. Motion in one dimension
3. Motion in two dimensions
4. Newton Laws
5. Energy
6. Momentum
7. Rotational motion
8. Gravity laws
9. Oscillation laws
10. Fluid Mechanics
11. Electric Field
12. Electric potential
13. Electric circuits
14. Charges in motion: electromagnetism
15. Magnetism

Program

Detailed program:

-Introduction to vectors

Dimensional analysis, unit conversion, coordinate systems, trigonometry, vector and scalar quantities, scalar product, vector sum, vector product: graphical method and analytical method.

-Motion

Average speed and instantaneous speed, hints on derivatives, constant speed, average acceleration and instantaneous acceleration, falling bodies, carriers position-velocity-acceleration, projectile motion, particle in uniform circular motion, radial and tangential acceleration, relative velocity and reference systems.

-Newton's laws

Concept of Force, Newton's first law, the concept of mass, Newton's second law-resultant force, gravitational force and weight, Newton's third law, static friction and kinetic friction, uniform circular motion and Newton's law, notes on the fundamental forces) , conservative and dissipative forces.

-Energy and energy transfer

Concept of Work, work done by a constant force, work done by a variable force, the concept of kinetic energy, non-isolated systems, dynamic friction and work, potential energy, isolated systems, the concept of conservative force, potential energy from the gravitational force, theorem kinetic energy

-Quantity Momentum and impact

Momentum and its conservation, the concept of momentum, elastic collision and inelastic collision, collisions in two dimensions, the center of mass motion of a particle system.

The rotational motion

Position, velocity and angular acceleration, concept of rigid body, rigid body in constant rotation, rigid body in constant acceleration, rotational and translational quantities, concept of rotational kinetic energy, the concept of torque, call the vector product, rigid body and resultant moment of forces, levers, definition of angular momentum, conservation of angular momentum, rolling of rigid bodies, rotational kinetic energy.

-Gravity

Outline of Kepler's laws, escape velocity, circular and elliptical orbit.

-The oscillatory motion

Particle attached to a spring, simple harmonic motion, Hooke's law, energy in a harmonic motion and soft, simple pendulum and nods of compound pendulum, damped oscillations.

- Fluid Mechanics

Concept of pressure, pressure and depth, pressure measurements, Archimedes' principle, the law of Pascal, ideal fluid, fluid dynamics and continuity equation of fluid flow, Bernoulli's theorem, viscous fluid.

-Electric Force and electric fields

Properties of electric charges, insulators and conductors, the concept of charge, Coulomb's law, electric force, the concept of field, electric field, electric field lines, the concept of electric dipole, motion of charged particles in a uniform electric field, electrical flow, Gauss theorem (with proof), application of Gauss theorem (various examples), conductors in electrostatic equilibrium.

- Electric potential

Potential difference and electric potential, the potential difference in a uniform electric field, electric potential energy, potential in a non-uniform electric field, electric potential and electric field, electric potential of a charged conductor, capacity concept, capacitors, connection of capacitors , energy of a charged capacitor.

-Current and electric circuits

Introduction to electric current, the concept of electrical resistance, Ohm's law, resistors in series and parallel, Kirchoff's laws, Joule's law.

-Elettromagnetism

Introduction to the magnetic field, charged particle in a uniform magnetic field, magnetic force, the Lorentz force, Read Maxwell.


Suggested book: Serway - Jewett, "Principi di Fisica", editor: EDISES.

Examination Methods

The exam will be mainly written, with a number of exercises to be solved (typically 4 or 5) following the lectures' program and similar to those that will be done in class.

The professor reserves the possibility to add an oral consultation, or in particular in the case in which the student is very close to the sufficiency without obtaining it, or in case there is any doubt about the actual evaluation of the student or even in the case where there is doubt or suspicion that the student has copied.

Type D and Type F activities

Modules not yet included

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details.

Graduation

List of theses and work experience proposals

theses proposals Research area
Studio delle proprietà di luminescenza di lantanidi in matrici proteiche Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry - Colloid chemistry
Multifunctional organic-inorganic hybrid nanomaterials for applications in Biotechnology and Green Chemistry Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry - New materials: oxides, alloys, composite, organic-inorganic hybrid, nanoparticles
Stampa 3D di nanocompositi polimerici luminescenti per applicazioni in Nanomedicina Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry - New materials: oxides, alloys, composite, organic-inorganic hybrid, nanoparticles
Dinamiche della metilazione del DNA e loro contributo durante il processo di maturazione della bacca di vite. Various topics
Risposte trascrittomiche a sollecitazioni ambientali in vite Various topics
Studio delle basi genomico-funzionali del processo di embriogenesi somatica in vite Various topics

Attendance

As stated in point 25 of the Teaching Regulations for the A.Y. 2021/2022, attendance is not mandatory. However, professors may require students to attend lectures for a minimum of hours in order to be able to take the module exam, in which case the methods that will be used to check attendance will be explained at the beginning of the module. 
Please refer to the Crisis Unit's latest updates for the mode of teaching.

Gestione carriere


Further services

I servizi e le attività di orientamento sono pensati per fornire alle future matricole gli strumenti e le informazioni che consentano loro di compiere una scelta consapevole del corso di studi universitario.