Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Study Plan
This information is intended exclusively for students already enrolled in this course.If you are a new student interested in enrolling, you can find information about the course of study on the course page:
Laurea in Biotecnologie - Enrollment from 2025/2026The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.
1° Year
Modules | Credits | TAF | SSD |
---|
2° Year activated in the A.Y. 2021/2022
Modules | Credits | TAF | SSD |
---|
3° Year activated in the A.Y. 2022/2023
Modules | Credits | TAF | SSD |
---|
1 module to be chosen among the following
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
1 module to be chosen among the following
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
Biochemistry and analytical biochemistry - BIOCHIMICA ANALITICA (2021/2022)
Teaching code
4S02696
Credits
4
Coordinator
Not yet assigned
Language
Italian
Scientific Disciplinary Sector (SSD)
BIO/10 - BIOCHEMISTRY
The teaching is organized as follows:
teoria
laboratorio [1° turno]
laboratorio [2° turno]
Learning outcomes
Knowledge of methodologies and methodological schemes for the study of biomolecules
Program
Protein purification Ionic properties of amino acids and proteins. Isoelectric point. Sample preparation. Methods of cell disruption and production of the initial crude extracts. Protein solubilization methods. Saline swabs. Fractionation and precipitation techniques. Filtration, dialysis, sample concentration. Spectroscopic techniques. Properties of electromagnetic radiation. Light-matter interaction. States and processes involved in the phenomena of absorption, emission and decay. Absorption spectroscopy in ultraviolet and visible. Qualitative and quantitative aspects of light absorption. Colorimetric and spectroscopic methods applied to the determination of protein concentration. Spectrophotometers. Fluorescence and emission spectroscopy. Intrinsic and extrinsic fluorophores. Green fluorescent protein Spectrofluorimeters. Fluorescence resonance energy transfer (FRET). Circular dichroism. Chromatographic techniques. Principles of chromatography. The chromatogram. Parameters that determine the chromatographic performance. Van Deemter equation. Column chromatography: ion exchange, molecular exclusion, affinity, hydrophobic interaction and their applications. Purification of fusion proteins with Electrophoretic techniques. General principles and electrophoretic mobility. Support materials. Nucleic acid electrophoresis. Protein electrophoresis. SDS PAGE. Electrophoresis in native conditions. Protein coloring on gel. Protein blotting (western blotting). Isoelectrofocusing. Basics of: Capillary electrophoresis. Two-dimensional electrophoresis gel.
Examination Methods
The final (written) exam will focus on all the topics of the program. The student will have to demonstrate that they understand and be able to use the fundamental concepts of each topic.