Studiare
In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.
Piano Didattico
Queste informazioni sono destinate esclusivamente agli studenti e alle studentesse già iscritti a questo corso.Se sei un nuovo studente interessato all'immatricolazione, trovi le informazioni sul percorso di studi alla pagina del corso:
Laurea magistrale in Mathematics - Immatricolazione dal 2025/2026Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.
1° Anno
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
3 courses to be chosen between
Legenda | Tipo Attività Formativa (TAF)
TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.
Partial differential equations (2017/2018)
Codice insegnamento
4S001097
Docente
Coordinatore
Crediti
6
Lingua di erogazione
Inglese
Settore Scientifico Disciplinare (SSD)
MAT/05 - ANALISI MATEMATICA
Periodo
II sem. dal 1 mar 2018 al 15 giu 2018.
Obiettivi formativi
The course aims to give a general overview of the theoretical aspects of the most important partial differential equations arising as fundamental models in the description of main phenomena in Physics, Biology, economical/social sciences and data analysis, such as diffusion, transport, reaction, concentration, wave propagation, with a particular focus on well-posedness (i.e. existence, uniqueness, stability with respect to data). Moreover, the theoretical properties of solutions are studied in connection with numerical approximation methods (e.g. Galerkin finite dimensional approximations) which are studied and implemented in the Advanced Numerical Analysis and Scientific Computing courses.
Programma
Mathematical modelling through Partial Differential Equations, well-posed problems, ill-posed problems and regularisation.
First order partial differential equations : Transport equation, Method of Characteristics,
Introduction to Calculus of Variations and Hamilton-Jacobi equations, Introduction to Scalar Conservation laws.
Second order partial differential equations : heat equation, Laplace equation, second order parabolic equations, second order hyperbolic equations, wave equation.
Introduction to Semigroup theory.
Autore | Titolo | Casa editrice | Anno | ISBN | Note |
---|---|---|---|---|---|
Evans, L. C. | Partial Differential Equations (Edizione 1) | American Mathematical Society | 1998 | 0821807722 | [E]Evans, L.C. ; Partial Differential Equations, Graduate Studies in Mathematics, 19. AMS, 1998 [S] Salsa, S., ; Partial Differential Equations in Action, ISBN 978-88-470-0751-2, 2008 Springer-Verlag Italia |
S. Salsa | Partial Differential Equations in Action | Springer Verlag Italia | 2008 | 978-88-470-0751-2 |
Modalità d'esame
The assesment is based on an oral presentation of selected topics of the course program together with an individual project on PDE modelling in open form to be agreed with course instructors.
The aim is to evaluate the skills of the students in understanding what are the appropriate mathematical tools and techniques, among those studied in the course, that have to be used to effectively solve problems arising as PDE modelling of different phenomena.