Studying at the University of Verona

This information is intended exclusively for students already enrolled in this course.
If you are a new student interested in enrolling, you can find information about the course of study on the course page:

Laurea magistrale a ciclo unico in Odontoiatria e protesi dentaria - Enrollment from 2025/2026

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.

1° Year

ModulesCreditsTAFSSD
10
A
BIO/16
7
A
BIO/10
6
A
FIS/07
7
A
BIO/17
13
A/B/C
INF/01 ,MED/01 ,MED/02 ,M-PED/03 ,M-PSI/01

2° Year  activated in the A.Y. 2022/2023

ModulesCreditsTAFSSD
7
A
BIO/10
9
A
BIO/09
13
B
MED/04 ,MED/07 ,MED/42
20
B/C/F
- ,INF/01 ,MED/28 ,MED/43 ,MED/50

3° Year  activated in the A.Y. 2023/2024

ModulesCreditsTAFSSD
7
B
BIO/14
14
B/C/F
- ,BIO/12 ,MED/09 ,MED/30

4° Year  activated in the A.Y. 2024/2025

ModulesCreditsTAFSSD
5
B/F
- ,MED/28
3
B/F
- ,MED/28
4
B/F
- ,MED/25 ,MED/26
13
B/F
- ,MED/18 ,MED/35 ,MED/41

5° Year  It will be activated in the A.Y. 2025/2026

ModulesCreditsTAFSSD
12
B/F
- ,MED/28
7
B/F
- ,MED/28 ,MED/38
12
B/F
- ,MED/28
8
B/F
- ,MED/28
6
B/F
- ,MED/28
10
B/C/F
- ,MED/28 ,MED/29 ,MED/31

6° Year  It will be activated in the A.Y. 2026/2027

ModulesCreditsTAFSSD
Final exam
10
E
-
ModulesCreditsTAFSSD
10
A
BIO/16
7
A
BIO/10
6
A
FIS/07
7
A
BIO/17
13
A/B/C
INF/01 ,MED/01 ,MED/02 ,M-PED/03 ,M-PSI/01
activated in the A.Y. 2022/2023
ModulesCreditsTAFSSD
7
A
BIO/10
9
A
BIO/09
13
B
MED/04 ,MED/07 ,MED/42
20
B/C/F
- ,INF/01 ,MED/28 ,MED/43 ,MED/50
activated in the A.Y. 2023/2024
ModulesCreditsTAFSSD
7
B
BIO/14
14
B/C/F
- ,BIO/12 ,MED/09 ,MED/30
activated in the A.Y. 2024/2025
ModulesCreditsTAFSSD
5
B/F
- ,MED/28
3
B/F
- ,MED/28
4
B/F
- ,MED/25 ,MED/26
13
B/F
- ,MED/18 ,MED/35 ,MED/41
It will be activated in the A.Y. 2025/2026
ModulesCreditsTAFSSD
12
B/F
- ,MED/28
7
B/F
- ,MED/28 ,MED/38
12
B/F
- ,MED/28
8
B/F
- ,MED/28
6
B/F
- ,MED/28
10
B/C/F
- ,MED/28 ,MED/29 ,MED/31
It will be activated in the A.Y. 2026/2027
ModulesCreditsTAFSSD
Final exam
10
E
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S01530

Coordinator

Maria Scupoli

Credits

8

Language

Italian

Scientific Disciplinary Sector (SSD)

BIO/13 - EXPERIMENTAL BIOLOGY

Period

LEZIONI 2°SEMESTRE  dal Feb 14, 2022 al May 27, 2022.

Learning outcomes

To offer the basic knowledge of human biology in an evolutionary perspective, underlying the molecular and cellular processes shared by all living organisms. To encourage students to critically evaluate experimental data by illustrating prime experiments of the past and contemporary biology. To describe the following processes: duplication, transmission, expression of the hereditary information; how changes arise To describe the hierarchy of master genes involved in tooth development and their interactions. To offer an updated information about the recombinant DNA technology and its applications to dentistry To teach the genetic bases of inherited diseases and how to interpret their modes of transmission To illustrate in particular various genetic conditions affecting dental health. At the end of the course, students must demonstrate to have gotten acquainted with basic knowledge of cellular functions, cell reproduction, cell-cell interactions, organism-to –organism interactions and organisms-to-environment interactions. They must also demonstrate to know how genetic traits are transmitted (mendelian and post-mendelian genetics, population genetics). They should be able to recognize inheritance patterns of genetic disorders, in particular those involving teeth development and structure. All these notions are a pre-requisite for further in depth studies , which will be undertaken by the students in subsequent courses.

Program

MODULE OF BIOLOGY
Introduction to Biology. Diversity and universal features of living organisms. Evolution. The origin of life on earth. The scientific method. Model organisms.
The cell. Cellular theory. Cells as fundamental unit of living organisms. Fundamental properties of cells. Cell organization.
Biomolecules. The chemistry of life. Lipids. Polysaccharides. Proteins. Nucleic acids.
Structure and function of DNA. DNA replication. Replication of telomeres and telomerase. Repair systems of DNA damage. Analysis of DNA: molecular hybridization, Polymerase Chain Reaction (PCR).
From DNA to proteins: gene expression. Transcription. Maturation of mRNA. Translation and the genetic code.
Regulation of gene expression. Regulation of gene expression in prokaryotes. Regulation of gene expression in eukaryotes. Positive and negative regulation of transcription. Epigenetic modification. Gene expression in development. Virus gene expression.
Signal transduction. General concepts. Signal molecules and receptors. Signaling pathways. Cellular responses to signals.
Cell division and the cell cycle. The cell cycle and its regulation. Mitosis. Meiosis.
Cell death. Apoptosis and necrosis. Apoptotic signals. Caspases. Apoptosis pathways. BCL2 proteins.
Gene mutation. Types of mutations. Causes of mutations. Mechanisms of DNA repair.
Cancer. The hallmarks of cancer. Critical genes in cancer.
Molecular medicine.

MODULE OF GENETICS
Organization of the human genome. Characteristics of nuclear genome: single-copy coding sequences, highly and moderately repetitive DNA sequences. Gene distribution on chromosomes. Examples of gene families. Transposons and genomic changes. Comparative genomics. The mitochondrial genome: peculiar features.
Normal and pathological human karyotype. Methods of prenatal and postnatal analysis. Cytogenetic anomalies and syndromes.
Chromosomal mechanism of sex determination. The role of SRY and DAX1. Inactivation of the X chromosome and dosage compensation.
Mendelian Genetics. The laws of the transmission of characters, terminology in Genetics. Morgan’s experiments, gene association and recombination.
Human Genetics. Determination of blood groups: ABO, Rh. Pedigrees. Autosomal dominant or recessive characters, sex-linked inheritance.
Medical Genetics. Examples of autosomal dominant, recessive, X-linked diseases.
Examples of Mendelian disorders in Dentistry. Amelogenesis imperfecta, dentinogenesis imperfecta.
Molecular Genetics in Dentistry. Master gene regulators involved in tooth development, signaling pathways and their disfunctions. Examples of related syndromes. Dental agenesis.
Exceptions to Mendelism. Imprinting, uniparental dysomy, mithocondrial inheritance, dynamic mutations.
Multifactorial characters and diseases. Examples (including dental caries) and study approaches.
Population Genetics. Changes of population genotypic frequencies, the Hardy Weinberg law, disturbing factors. Effects of selection.

DIDACTIC MODES
Attendance to lessons is mandatory. Classes will consist of theorical lessons covering the whole exam program. Oral explanations will be coadiuvated by PowerPoint presentations and videos, which will be made available to students through a dedicated Department web site. Additional didactic supports (multiple choice quizzes for self-assessment, journal articles, reviews, etc.) may be suggested during the course and will be made available to students for download. During the whole Academic Year, students may request personal reception to the teachers, by e mail.

Bibliography

Visualizza la bibliografia con Leganto, strumento che il Sistema Bibliotecario mette a disposizione per recuperare i testi in programma d'esame in modo semplice e innovativo.

Examination Methods

The exam consists of written tests to be held simultaneously for both the Biology and Genetics modules. For each module, the test is composed of 13 multiple choice quizzes (MCQ) and 2 open questions concerning the entire program. Goals of the written test are: a) to monitor students’ learning process, b) to monitor students’ capacity of personal re-elaboration of notions, c) to monitor students’ ability to apply theoretical notions to experimental queries. Score (in /30) of the written test for each module strongly influences final outcome. A positive score will be achieved with at least 8 correct MCQ plus 1 open question for each test. An oral examination may follow only if written text score is ≥ 18/30. Students can either retire from the examination or refuse the proposed score at any time. In both cases they shall enroll again for the whole examination. The exam will be held in person.

Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE