Studiare

In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.

Calendario accademico

Il calendario accademico riporta le scadenze, gli adempimenti e i periodi rilevanti per la componente studentesca, personale docente e personale dell'Università. Sono inoltre indicate le festività e le chiusure ufficiali dell'Ateneo.
L’anno accademico inizia il 1° ottobre e termina il 30 settembre dell'anno successivo.

Calendario accademico

Calendario didattico

Il calendario didattico indica i periodi di svolgimento delle attività formative, di sessioni d'esami, di laurea e di chiusura per le festività.

Definizione dei periodi di lezione
Periodo Dal Al
Primo semestre 4-ott-2021 28-gen-2022
Secondo semestre 7-mar-2022 10-giu-2022
Sessioni degli esami
Sessione Dal Al
Sessione invernale d'esame 31-gen-2022 4-mar-2022
Sessione estiva d'esame 13-giu-2022 29-lug-2022
Sessione autunnale d'esame 1-set-2022 30-set-2022
Sessioni di lauree
Sessione Dal Al
Sessione Estiva 15-lug-2022 15-lug-2022
Sessione Autunnale 14-ott-2022 14-ott-2022
Sessione Invernale 14-mar-2023 14-mar-2023
Vacanze
Periodo Dal Al
Festa di Tutti i Santi 1-nov-2021 1-nov-2021
Festa dell'Immacolata Concezione 8-dic-2021 8-dic-2021
Festività natalizie 24-dic-2021 2-gen-2022
Festa dell'Epifania 6-gen-2022 7-gen-2022
Festività pasquali 15-apr-2022 19-apr-2022
Festa della Liberazione 25-apr-2022 25-apr-2022
Festività Santo Patrono di Verona 21-mag-2022 21-mag-2022
Festa della Repubblica 2-giu-2022 2-giu-2022
Chiusura estiva 15-ago-2022 20-ago-2022

Calendario esami

Gli appelli d'esame sono gestiti dalla Unità Operativa Segreteria Corsi di Studio Scienze e Ingegneria.
Per consultazione e iscrizione agli appelli d'esame visita il sistema ESSE3.
Per problemi inerenti allo smarrimento della password di accesso ai servizi on-line si prega di rivolgersi al supporto informatico della Scuola o al servizio recupero credenziali

Calendario esami

Per dubbi o domande leggi le risposte alle domande più frequenti F.A.Q. Iscrizione Esami

Docenti

B C D F G M O P R S

Belussi Alberto

symbol email alberto.belussi@univr.it symbol phone-number +39 045 802 7980

Bombieri Nicola

symbol email nicola.bombieri@univr.it symbol phone-number +39 045 802 7094

Busato Federico

symbol email federico.busato@univr.it

Carra Damiano

symbol email damiano.carra@univr.it symbol phone-number +39 045 802 7059

Castellani Umberto

symbol email umberto.castellani@univr.it symbol phone-number +39 045 802 7988

Ceccato Mariano

symbol email mariano.ceccato@univr.it

Cicalese Ferdinando

symbol email ferdinando.cicalese@univr.it symbol phone-number +39 045 802 7969

Cristani Matteo

symbol email matteo.cristani@univr.it symbol phone-number +39 045 802 7983

Cristani Marco

symbol email marco.cristani@univr.it symbol phone-number +39 045 802 7841

Cubico Serena

symbol email serena.cubico@univr.it symbol phone-number 045 802 8132

Dalla Preda Mila

symbol email mila.dallapreda@univr.it

Di Pierro Alessandra

symbol email alessandra.dipierro@univr.it symbol phone-number +39 045 802 7971

Farinelli Alessandro

symbol email alessandro.farinelli@univr.it symbol phone-number +39 045 802 7842

Fiorini Paolo

symbol email paolo.fiorini@univr.it symbol phone-number 045 802 7963

Fratea Caterina

symbol email caterina.fratea@univr.it symbol phone-number 045 842 5358

Fummi Franco

symbol email franco.fummi@univr.it symbol phone-number 045 802 7994

Giacobazzi Roberto

symbol email roberto.giacobazzi@univr.it symbol phone-number +39 045 802 7995

Maris Bogdan Mihai

symbol email bogdan.maris@univr.it symbol phone-number +39 045 802 7074

Masini Andrea

symbol email andrea.masini@univr.it symbol phone-number +39 045 802 7922

Mastroeni Isabella

symbol email isabella.mastroeni@univr.it symbol phone-number +39 045 802 7089

Mazzi Giulio

symbol email giulio.mazzi@univr.it

Menegaz Gloria

symbol email gloria.menegaz@univr.it symbol phone-number +39 045 802 7024

Merro Massimo

symbol email massimo.merro@univr.it symbol phone-number +39 045 802 7992

Oliboni Barbara

symbol email barbara.oliboni@univr.it symbol phone-number +39 045 802 7077

Paci Federica Maria Francesca

symbol email federicamariafrancesca.paci@univr.it symbol phone-number +39 045 802 7909

Pianezzi Daniela

symbol email daniela.pianezzi@univr.it

Posenato Roberto

symbol email roberto.posenato@univr.it

Rizzi Romeo

symbol email romeo.rizzi@univr.it symbol phone-number +39 045 802 7088

Sala Pietro

symbol email pietro.sala@univr.it symbol phone-number +39 045 802 7850

Segala Roberto

symbol email roberto.segala@univr.it symbol phone-number +39 045 802 7997

Piano Didattico

Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.

CURRICULUM TIPO:

1° Anno 

2° Anno   Attivato nell'A.A. 2022/2023

InsegnamentiCreditiTAFSSD
Prova finale
24
E
-
Attivato nell'A.A. 2022/2023
InsegnamentiCreditiTAFSSD
Prova finale
24
E
-
Insegnamenti Crediti TAF SSD
Tra gli anni: 1°- 2°
Tra gli anni: 1°- 2°
Altre attività
3
F
-
Tra gli anni: 1°- 2°

Legenda | Tipo Attività Formativa (TAF)

TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.




S Stage e tirocini presso imprese, enti pubblici o privati, ordini professionali

Codice insegnamento

4S008908

Crediti

6

Coordinatore

Non ancora assegnato

Lingua di erogazione

Italiano

Settore Scientifico Disciplinare (SSD)

INF/01 - INFORMATICA

L'insegnamento è organizzato come segue:

Teoria
Attività mutuata da Architectures and systems for biological data processing - Teoria del corso: Laurea magistrale in Medical bioinformatics

Crediti

4

Periodo

Secondo semestre

Docenti

Nicola Bombieri

Laboratorio
Attività mutuata da Architectures and systems for biological data processing - Laboratorio del corso: Laurea magistrale in Medical bioinformatics

Crediti

2

Periodo

Secondo semestre

Docenti

Nicola Bombieri

Obiettivi formativi

Il corso si propone di fornire conoscenze teoriche e pratiche per la programmazione e l'analisi di architetture di calcolo avanzate con particolare enfasi alle piattaforme multiprocessore e GPU. Conoscenza e capacità di comprensione Capacità di applicare le conoscenze necessarie per individuare tecniche di parallelizzazione di applicazioni Software, anche in un contesto di ricerca, attraverso l'analisi dell'efficienza delle applicazioni considerando vincoli funzionali e non funzionali di progettazione (correttezza, performance, consumo energetico). Conoscenze applicate e capacità di comprensione Analisi delle performance e profiling del codice, con individuazione zone critiche e relativa ottimizzazione considerando caratteristiche architetturali della piattaforma. Autonomia di giudizio Capacità di confrontare pattern di parallelismo diversi e scegliere tra questi il piu adeguato a seconda del contesto d'uso. In fase di definizione della struttura del codice ottimizzato, capacità di fare le scelte progettuali più appropriate a seconda del contesto e piattaforma in cui l'applicazione parallela verrà usata. Abilità comunicative Lo studente sarà, inoltre, in grado di relazionarsi con gli interlocutori nell'ambiente lavorativo o di ricerca. Capacità di apprendere Capacità di proseguire gli studi in modo autonomo nell’ambito dei linguaggi di programmazione paralleli e dello sviluppo di software per piattaforme embedded e/o parallele.

Programma

Teoria:
- Parallel architectures
- Parallel programming models
- Performance measurement
- Perspective on Parallel Programming
- Designing parallel programs
- GPUs and CUDA:
overview , parallel programming model, threads
memory hierarchy/model
performance considerations
optimizations
- Graph algorithms on GPUs
data representations: Adj. matriX/lists, edge lists
Parallel algorithms for graph traversal (BFS)
Parallel algorithms for graph analysis (SSSP, APSP)
Parallel algorithms for graphs: load balancing and memory accesses: issues and management

Lab:
- OpenMP
- MPI
- CUDA

Modalità d'esame

Per superare l'esame lo studente dovrà dimostrare di:
- aver compreso i principi alla base della programmazione parallela
- essere in grado di esporre le proprie argomentazioni in modo preciso e organico senza divagazioni
- saper applicare le conoscenze acquisite per risolvere problemi applicativi presentati sotto forma di esercizi, domande e progetti.

L'esame consiste in una prova scritta, contenente domande a risposta multipla, domande a risposta aperta ed esercizi riguardanti sia la parte teorica che di laboratorio. Lo studente potrà elaborare un progetto assegnato dal docente per un bonus (fino a +5 punti).

Le/gli studentesse/studenti con disabilità o disturbi specifici di apprendimento (DSA), che intendano richiedere l'adattamento della prova d'esame, devono seguire le indicazioni riportate QUI

Tipologia di Attività formativa D e F

Le attività formative di tipologia D sono a scelta dello studente, quelle di tipologia F sono ulteriori conoscenze utili all’inserimento nel mondo del lavoro (tirocini, competenze trasversali, project works, ecc.). In base al Regolamento Didattico del Corso, alcune attività possono essere scelte e inserite autonomamente a libretto, altre devono essere approvate da apposita commissione per verificarne la coerenza con il piano di studio. Le attività formative di tipologia D o F possono essere ricoperte dalle seguenti attività.

1. Insegnamenti impartiti presso l'Università di Verona

Comprendono gli insegnamenti sotto riportati e/o nel Catalogo degli insegnamenti (che può essere filtrato anche per lingua di erogazione tramite la Ricerca avanzata).

Modalità di inserimento a libretto: se l'insegnamento è compreso tra quelli sottoelencati, lo studente può inserirlo autonomamente durante il periodo in cui il piano di studi è aperto; in caso contrario, lo studente deve fare richiesta alla Segreteria, inviando a carriere.scienze@ateneo.univr.it il modulo nel periodo indicato.

2. Attestato o equipollenza linguistica CLA

Oltre a quelle richieste dal piano di studi, per gli immatricolati dall'A.A. 2021/2022 vengono riconosciute:

  • Lingua inglese: vengono riconosciuti 3 CFU per ogni livello di competenza superiore a quello richiesto dal corso di studio (se non già riconosciuto nel ciclo di studi precedente).
  • Altre lingue e italiano per stranieri: vengono riconosciuti 3 CFU per ogni livello di competenza a partire da A2 (se non già riconosciuto nel ciclo di studi precedente).

Tali cfu saranno riconosciuti, fino ad un massimo di 6 cfu complessivi, di tipologia F se il piano didattico lo consente, oppure di tipologia D. Ulteriori crediti a scelta per conoscenze linguistiche potranno essere riconosciuti solo se coerenti con il progetto formativo dello studente e se adeguatamente motivati.

Gli immatricolati fino all'A.A. 2020/2021 devono consultare le informazioni che si trovano qui.

Modalità di inserimento a librettorichiedere l’attestato o l'equipollenza al CLA e inviarlo alla Segreteria Studenti - Carriere per l’inserimento dell’esame in carriera, tramite mail: carriere.scienze@ateneo.univr.it

3. Competenze trasversali

Scopri i percorsi formativi promossi dal TALC - Teaching and learning center dell'Ateneo, destinati agli studenti regolarmente iscritti all'anno accademico di erogazione del corso https://talc.univr.it/it/competenze-trasversali

Modalità di inserimento a libretto: non è previsto l'inserimento dell'insegnamento nel piano di studi. Solo in seguito all'ottenimento dell'Open Badge verranno automaticamente convalidati i CFU a libretto. La registrazione dei CFU in carriera non è istantanea, ma ci saranno da attendere dei tempi tecnici.  

4. Periodo di stage/tirocinio

Oltre ai CFU previsti dal piano di studi (verificare attentamente quanto indicato sul Regolamento Didattico): qui informazioni su come attivare lo stage. 

Verificare nel regolamento quali attività possono essere di tipologia D e quali di tipologia F.

Insegnamenti e altre attività che si possono inserire autonomamente a libretto

 

1° periodo lezioni (1A) Dal 16/09/21 Al 30/10/21
anni Insegnamenti TAF Docente
1° 2° Lab.: The fashion lab (1 cfu) D Caterina Fratea (Coordinatore)
Primo semestre Dal 04/10/21 Al 28/01/22
anni Insegnamenti TAF Docente
1° 2° Analisi di dati per scienze biomediche D Gloria Menegaz (Coordinatore)
1° 2° Introduzione alla robotica per studenti di materie scientifiche D Paolo Fiorini (Coordinatore)
1° 2° Linguaggio Programmazione Matlab-Simulink D Bogdan Mihai Maris (Coordinatore)
1° periodo lezioni (1B) Dal 05/11/21 Al 16/12/21
anni Insegnamenti TAF Docente
1° 2° Lab.: The fashion lab (1 cfu) D Caterina Fratea (Coordinatore)
Secondo semestre Dal 07/03/22 Al 10/06/22
anni Insegnamenti TAF Docente
1° 2° Introduzione alla robotica per studenti di materie scientifiche D Paolo Fiorini (Coordinatore)
1° 2° Introduzione alla stampa 3D D Franco Fummi (Coordinatore)
1° 2° Progettazione di componenti hardware su FPGA D Franco Fummi (Coordinatore)
1° 2° Prototipizzazione con Arduino D Franco Fummi (Coordinatore)
1° 2° Tutela dei beni immateriali (SW e invenzione) tra diritto industriale e diritto d’autore D Roberto Giacobazzi (Coordinatore)
Elenco degli insegnamenti con periodo non assegnato
anni Insegnamenti TAF Docente
1° 2° Linguaggio programmazione Python D Giulio Mazzi (Coordinatore)

Prospettive


Avvisi degli insegnamenti e del corso di studio

Per la comunità studentesca

Se sei già iscritta/o a un corso di studio, puoi consultare tutti gli avvisi relativi al tuo corso di studi nella tua area riservata MyUnivr.
In questo portale potrai visualizzare informazioni, risorse e servizi utili che riguardano la tua carriera universitaria (libretto online, gestione della carriera Esse3, corsi e-learning, email istituzionale, modulistica di segreteria, procedure amministrative, ecc.).
Entra in MyUnivr con le tue credenziali GIA: solo così potrai ricevere notifica di tutti gli avvisi dei tuoi docenti e della tua segreteria via mail e anche tramite l'app Univr.

Docenti tutor


Prova Finale

Scadenziari e adempimenti amministrativi

Per gli scadenziari, gli adempimenti amministrativi e gli avvisi sulle sessioni di laurea, si rimanda al servizio Sessioni di laurea - Scienze e Ingegneria.

Necessità di attivare un tirocinio per tesi

Per stage finalizzati alla stesura della tesi di laurea, non è sempre necessaria l'attivazione di un tirocinio tramite l'Ufficio Stage. Per maggiori informazioni, consultare il documento dedicato, che si trova nella sezione "Documenti" del servizio dedicato agli stage e ai tirocini.

Regolamento della prova finale

Alla tesi di laurea sono dedicati 24 CFU, per un lavoro che non deve superare i 4-5 mesi a tempo pieno per la/o studentessa/studente.

Scopo della Tesi di Laurea

La Tesi di Laurea costituisce un importante ed imprescindibile passo nella formazione della/del futura/o laureata/o Magistrale in Ingegneria e Scienze Informatiche. Scopo della tesi è quello di sviluppare uno studio quanto più originale che può culminare con un progetto applicativo o un risultato teorico connesso a specifici problemi di natura progettuale o una rassegna critica sullo stato dell'arte in un determinato ambito di studio. Su proposta della/del relatrice/relatore, può essere compilato e discusso in lingua straniera. Nel corso dello svolgimento della Tesi il laureando dovrà, sotto la guida della relatrice/relatore ed eventuali correlatrici/correlatori, affrontare lo studio e l'approfondimento degli argomenti scelti, ma anche acquisire capacità di sintesi e applicazione creativa delle conoscenze acquisite. Il contenuto della Tesi deve essere inerente a tematiche dell'ingegneria e delle Scienze Informatiche o discipline strettamente correlate. La Tesi consiste nella presentazione in forma scritta di attività che possono essere articolate come:

  1. progettazione e sviluppo di applicazioni o sistemi;
  2. analisi critica di contributi tratti dalla letteratura scientifica;
  3. contributi originali di ricerca.

La Tesi può essere redatta sia in lingua inglese che in lingua italiana, e può essere discussa sia in inglese che in italiano, anche mediante l'ausilio di supporti multimediali quali slide, filmati, immagini e suoni. Nel caso di tesi redatta in lingua italiana alla medesima dovrà essere aggiunto un breve riassunto in lingua inglese.

Modalità di svolgimento e valutazione

Ogni Tesi di Laurea può essere interna o esterna a seconda che sia svolta presso l'Università di Verona o in collaborazione con altro ente, rispettivamente. Ogni Tesi prevede una/un relatrice/relatore eventualmente affiancata/o da una/uno o più correlatrici/correlatori e una/un controrelatrice/controrelatore. La/il controrelatrice/controrelatore è nominata/o dal Collegio Didattico di Informatica almeno 20 giorni prima della discussione della Tesi, verificata l'ammissibilità della/o studentessa/studente a sostenere l’esame di Laurea Magistrale. Per quanto riguarda gli aspetti giuridici (e.g., proprietà intellettuale dei risultati) legati alla Tesi e ai risultati ivi contenuti si rimanda alla legislazione vigente in materia ed ai Regolamenti di Ateneo.

Valutazione delle Tesi

I criteri su cui sono chiamati ad esprimersi relatore ed eventuali correlatori e controrelatore sono i seguenti:

  1. livello di approfondimento del lavoro svolto, in relazione allo stato dell'arte dei settori disciplinari di pertinenza informatica;
  2. avanzamento conoscitivo o tecnologico apportato dalla Tesi;
  3. impegno critico espresso dalla/dal laureanda/o;
  4. impegno sperimentale e/o di sviluppo formale espresso dal laureando;
  5. autonomia di lavoro espressa dalla/dal laureanda/o;
  6. significatività delle metodologie impiegate;
  7. accuratezza dello svolgimento e della scrittura;
  8. la/il controrelatrice/controrelatore non è chiamata/o ad esprimersi sul punto 5.

Voto di Laurea

Il voto di Laurea (espresso in 110mi) è un valore intero compreso tra 66/110 e 110/110 e viene formato dalla somma, arrotondata al numero intero più vicino (e.g., 93.50 diventa 94, 86.49 diventa 86), dei seguenti addendi:

  • 1. media pesata sui crediti e rapportata a 110 dei voti conseguiti negli esami di profitto;
  • 2. valutazione del colloquio di Laurea e della Tesi secondo le seguenti modalità:
    • a. attribuzione di un coefficiente compreso tra 0 e 1 (frazionario con una cifra decimale) per ciascuno dei punti 1-7 elencati sopra;
    • b. attribuzione di un coefficiente compreso tra 0 e 1 (frazionario con una cifra decimale) per la qualità della presentazione;
    • c. somma dei coefficienti attribuiti ai punti a e b.

La presenza di eventuali lodi ottenute negli esami sostenuti, la partecipazione a stage ufficialmente riconosciuti dal Collegio Didattico di Informatica, il superamento di esami in soprannumero ed il raggiungimento della Laurea in tempi contenuti rispetto alla durata legale del corso degli studi possono essere utilizzati dalla Commissione di Laurea per attribuire un ulteriore incremento di un punto.

Qualora la somma ottenuta raggiunga 110/110, la Commissione può decidere l'attribuzione della lode. La lode viene proposta e discussa dalla Commissione, senza l'adozione di particolari meccanismi di calcolo automatico. In base alle norme vigenti, la lode viene attribuita solo se il parere è unanime.

Tesi esterne

Una Tesi esterna viene svolta in collaborazione con un ente diverso dall'Università di Verona. In tal caso, la/il laureanda/o dovrà preventivamente concordare il tema della Tesi con una/un relatrice/relatore dell'Ateneo. Inoltre, è previsto almeno una/un correlatrice/correlatore appartenente all'ente esterno, quale riferimento immediato per la/o studentessa/studente nel corso dello svolgimento dell’attività di Tesi. Relatrice/relatore e correlatrici/correlatori devono essere indicate/i nella domanda di assegnazione Tesi. Le modalità assicurative della permanenza della/o studentessa/studente presso l'Ente esterno sono regolate dalle norme vigenti presso l'Università di Verona. Se la Tesi si configura come un periodo di formazione presso tale ente, allora è necessario stipulare una convenzione tra l'Università e detto ente. I risultati contenuti nella Tesi sono patrimonio in comunione di tutte le persone ed enti coinvolti. In particolare, i contenuti ed i risultati della Tesi sono da considerarsi pubblici. Per tutto quanto riguarda aspetti non strettamente scientifici (e.g. convenzioni, assicurazioni) ci si rifà alla delibera del SA. del 12 gennaio 1999

Relatrice/relatore,correlatrici/correlatori,controrelatrici/controrelatori

La Tesi di Laurea viene presentata da una/un relatrice/relatore docente di ruolo del Dipartimento di Informatica o inquadrato nei SSD ING-INF/05 e INF/01. Oltre a coloro che hanno i requisiti indicati rispetto al ruolo di relatrice/relatore (come indicato sopra), possono svolgere il ruolo di correlatrici/correlatori anche ricercatrici/ricercatori operanti in istituti di ricerca extrauniversitari assegnisti di ricerca, titolari di borsa di studio post-dottorato, dottorandi di ricerca, personale tecnico del Dipartimento, cultrici/cultori della materia nominate/i da un Ateneo italiano ed ancora in vigore, referenti aziendali esperte/i nel settore considerato nella Tesi. Può essere nominata/o controrelatrice/controrelatore qualunque docente professoressa/professore o ricercatrice/ricercatore del Dipartimento di Informatica dell'Università degli Studi di Verona, che risulti particolarmente competente nell'ambito specifico di studio della Tesi.

Elenco delle proposte di tesi

Proposte di tesi Area di ricerca
Analisi ed identificazione automatica del tono/volume della voce AI, Robotics & Automatic Control - AI, Robotics & Automatic Control
Analisi e percezione dei segnali biometrici per l'interazione con robot AI, Robotics & Automatic Control - AI, Robotics & Automatic Control
Integrazione del simulatore del robot Nao con Oculus Rift AI, Robotics & Automatic Control - AI, Robotics & Automatic Control
Tesi in ragionamento automatico Computing Methodologies - ARTIFICIAL INTELLIGENCE
Sviluppo sistemi di scansione 3D Computing Methodologies - COMPUTER GRAPHICS
Sviluppo sistemi di scansione 3D Computing Methodologies - IMAGE PROCESSING AND COMPUTER VISION
Dati geografici Information Systems - INFORMATION SYSTEMS APPLICATIONS
Analisi ed identificazione automatica del tono/volume della voce Robotics - Robotics
Analisi e percezione dei segnali biometrici per l'interazione con robot Robotics - Robotics
Integrazione del simulatore del robot Nao con Oculus Rift Robotics - Robotics
Tesi in ragionamento automatico Theory of computation - Logic
Tesi in ragionamento automatico Theory of computation - Semantics and reasoning
Proposte di tesi/collaborazione/stage in Intelligenza Artificiale Applicata Argomenti vari
Proposte di Tesi/Stage/Progetto nell'ambito dell'analisi dei dati Argomenti vari

Modalità e sedi di frequenza

Come riportato nel Regolamento Didattico, la frequenza al corso di studio non è obbligatoria.

È consentita l'iscrizione a tempo parziale. Per saperne di più consulta la pagina Possibilità di iscrizione Part time.

Le attività didattiche del corso di studi si svolgono negli spazi dell’area di Scienze e Ingegneria che è composta dagli edifici di Ca’ Vignal 1, Ca’ Vignal 2, Ca’ Vignal 3 e Piramide, siti nel polo di Borgo Roma. 
Le lezioni frontali si tengono nelle aule di Ca’ Vignal 1, Ca’ Vignal 2, Ca’ Vignal 3 mentre le esercitazioni pratiche nei laboratori didattici dedicati alle varie attività.

Caratteristiche dei laboratori didattici a disposizione degli studenti

  • Laboratorio Alfa
    • 50 PC disposti in 13 file di tavoli
    • 1 PC per docente collegato a un videoproiettore 8K Ultra Alta Definizione per le esercitazioni
    • Configurazione PC: Intel Core i3-7100, 8GB RAM, 250GB SSD, monitor 24", Linux Ubuntu 24.04
    • Tutti i PC sono accessibili da persone in sedia a rotelle
  • Laboratorio Delta
    • 120 PC in 15 file di tavoli
    • 1 PC per docente collegato a due videoproiettori 4K per le esercitazioni
    • Configurazione PC: Intel Core i3-7100, 8GB RAM, 250GB SSD, monitor 24", Linux Ubuntu 24.04
    • Un PC è su un tavolo ad altezza variabile per garantire un accesso semplificato a persone in sedia a rotelle
  • Laboratorio Gamma (Cyberfisico)
    • 19 PC in 3 file di tavoli
    • 1 PC per docente con videoproiettore 4K
    • Configurazione PC: Intel Core i7-13700, 16GB RAM, 512GB SSD, monitor 24", Linux Ubuntu 24.04
  • Laboratorio VirtualLab
    • Accessibile via web: https://virtualab.univr.it
    • Emula i PC dei laboratori Alfa/Delta/Gamma
    • Usabile dalla rete universitaria o tramite VPN dall'esterno
    • Permette agli studenti di lavorare da remoto (es. biblioteca, casa) con le stesse funzionalità dei PC di laboratorio

Caratteristiche comuni:

  • Tutti i PC hanno la stessa suite di programmi usati negli insegnamenti di laboratorio
  • Ogni studente ha uno spazio disco personale di XXX GB, accessibile da qualsiasi PC
  • Gli studenti quindi possono usare qualsiasi PC in qualsiasi laboratorio senza limitazioni ritrovando sempre i documenti salvati precedentemente

Questa organizzazione dei laboratori offre flessibilità e continuità nel lavoro degli studenti, consentendo l'accesso ai propri documenti e all'ambiente di lavoro da qualsiasi postazione o da remoto.


Gestione carriere


Area riservata studenti


Erasmus+ e altre esperienze all’estero